SciELO - Scientific Electronic Library Online

 
vol.18 issue2Trajectory Tracking for Chaos Synchronization via PI Control Law between Roosler-ChenLaws Governing in Mexico for Computer Programs, Data Bases and Documentation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.2 México Apr./Jun. 2014

http://dx.doi.org/10.13073/CyS-18-2-2014-041 

Artículos regulares

 

Sliding Mode Control Applied to a Mini-Aircraft Pitch Position Model

 

Control de posición de cabeceo por modos deslizantes para un avión pequeño

 

Ricardo Carreño Aguilera, Miguel Patiño Ortiz, and Julián Patiño Ortiz

 

ESIME, Instituto Politécnico Nacional, México D.F., Mexico. rcrc2013@outlook.com, mpatino2002@ipn.mx, jpatinoo@ipn.mx

 

Abstract

Normally, mini-aircraft must be able to perform tasks such as aerial photography, aerial surveillance, remote fire and pollution sensing, disaster areas, road traffic and security monitoring, among others, without stability problems in the presence of many bounded perturbations. The dynamical model is affected by blast perturbations. Based on this, it is possible to design, evaluate and compare the real result with respect to pitch control law based on reference trajectory in the presence of external disturbances (blasts) or changes in the aircraft controller model. The model has non-linear properties but, with soft perturbations through the aircraft trajectory, allows a linear description without losing its essential properties. The Laplace description is a transfer function that works to develop the state space, with unknown invariant parameters using a wind tunnel. Control law is based on a feedback sliding mode with decoupled disturbances, and the output result is compared with the real pitch position measured in the real system. The control law applied to the system has a high convergence performance.

Keywords: Sliding modes, integral and proportional control, mini-aircraft models.

 

Resumen

Comúnmente un avión pequeño debe ser capaz de realizar tareas tales como la de fotografía aérea, vigilancia, detección de incendios a distancia, detectar los niveles de contaminación, monitorear las zonas de desastre, ver el tránsito y brindar seguridad a través de la video-vigilancia, entre otras aplicaciones considerando que no tiene problemas de estabilidad en presencia de perturbaciones acotadas. El modelo dinámico de esa aeronave se ve afectado por las perturbaciones, y que con base en ellas fue posible diseñar un controlador por modos deslizantes. Aplicable a los diferentes movimientos longitudinales que hace hacia arriba o hacia abajo con respecto a la trayectoria de referencia, el modelo de avión tiene propiedades no lineales; pero con perturbaciones suaves a través de su trayectoria; lo que permite una descripción lineal sin perder muchas de sus propiedades esenciales. La descripción de Laplace permitió obtener su función de transferencia y así desarrollar el espacio de estados, con parámetros invariantes y desconocidos. Los cuales fueron descritos utilizando un túnel de viento. La ley de control se basó en la técnica de modos deslizantes con perturbaciones desacopladas. Sus resultados se compararon con el movimiento de cabeceo medido dentro de la aeronave. La ley de control aplicada al sistema real tuvo un desempeño con alta convergencia.

Palabras clave: Modos deslizantes, control proporcional e integral, modelo para aviones pequeños.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Bhattacharyya, S.P. (1982). Transfer Function Conditions for Output Feedback Disturbance Rejection. IEEE Transactions on Automatic Control, 27(4), 974-977.         [ Links ]

2. Ogata, K. (2010). Ingeniería de Control (5ta ed.). Madrid, España: Pearson Hall.         [ Links ]

3. Roskam, J. (1998-2001). Airplane Flight Dynamics and Automatic Flight Controls. Lawrence, Kan: DAR Corporation.         [ Links ]

4. Chudoba, B. (2001). Stability and Control of Conventional and Unconventional Aircraft Configurations: A Generic Approach. Russia: Books on Demand.         [ Links ]

5. Etkin, B. & Reid, L.D. (1996). Dynamics of Flight: Stability and Control. New York: Wiley.         [ Links ]

6. Golnaraghi, F. & Kuo, B.C. (2009). Automatic Control Systems (9th ed.). New York: Wiley.         [ Links ]

7. Yechout, T.R., Morris, S.L., Bossert, D.E., & Hallgren, W.F. (2003). Introduction to Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability, and Classical Feedback Control. Reston, VA: American Institute of Aeronautics and Astronautics.         [ Links ]

8. Pamadi, B.N. (2004). Performance, Stability, Dynamics, and Control of Airplanes (2nd ed.). Reston, VA: American Institute of Aeronautics and Astronautics.         [ Links ]

9. Cook, M.V. (2013). Flight Dynamics Principles: A linear Systems Approach to Aircraft Stability and Control (3rd ed). Amsterdam; Boston: Butterworth-Heinemann.         [ Links ]

10. Abzug, M.J. & Larrabee, E.E. (2005). Airplane Stability and Control: A History of the Technologies that Made Aviation Possible (2nd ed.). Cambridge, UK: Cambridge University Press.         [ Links ]

11. Phillips, W.F. (2004). Mechanics of flight. Hoboken, N.J.: Wiley.         [ Links ]

12. Utkin, V.I. (1978). Sliding modes and their application in variable Structure Systems. Moscow: MIR publishers.         [ Links ]

13. Guevara, P., Medel, J.J., & Cruz, D. (2004). Modelo dinámico para una tarea en tiempo real. Computación y Sistemas, 8(1), 61-73.         [ Links ]

14. Bartolini, G., Ferrara, A., & Usani, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control, 43(2), 241-246.         [ Links ]

15. Chen, C.T. (2009). Linear System Theory and Design (3rd ed.). New York: Oxford University Press.         [ Links ]

16. Taller de construcciones aeronáuticas (TDCA). TLALOC ACR-II Project. Postgraduate studies and research Direction (DEPI), register number: 900931-IPN, E.S.I. M. E. - TI COMA N. México D.F.         [ Links ]

17. Utkin, V.I. (1992). Sliding models in control and optimization. Berlin: Springer-Verlag.         [ Links ]

18. Ming-chin, W. & Ming-chang, S. (2003). Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control. Mechatronics, 13(4), 331-351.         [ Links ]

19. Bouri, M. & Thomasset, D. (2001). Sliding Control of an electropneumatic actuator using an integral switching surface. IEEE transactions on control systems technology, 9(2), 368-375.         [ Links ]

20. Ang, K., Chong, G., & Yun, L. (2005). PID control system analysis, design, and technology. IEEE transactions on control systems technology, 13(4), 559-576.         [ Links ]

21. Βrégeault , V. , Plestan, F., Shtessel, Y., & Poznyak, A. (2010). Adaptive sliding mode control for an electropneumatic actuator. 11th International Workshop on Variable Structure Systems (VSS), México, City, 260-265.         [ Links ]

22. Girin, A., Plestan, F., Brun, X., & Glumineau, A. (2009). High-Order Sliding-Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark. IEEE transactions on control systems technology, 17(3), 633-645.         [ Links ]

23. Prabel, R., Schindele, D., Aschemann, H., & Butt, S.S. (2012). Model-based control of an electropneumatic clutch using a sliding-mode approach. 7th IEEE Conference on Industrial Electronics and Applications, Singapore, 1195-1200.         [ Links ]

24. Young-Shin, K., Bum-Jim, P., Am, C., & Chang-Sun, Y. (2012). Flight test of flight control performance for airplane mode of Smart UAV. 12th International Conference on Control Automation and Systems (ICCAS), JeJu Island, Korea, 1738-1741.         [ Links ]

25. Wang, J., He, L., & Sun, M. (2010). Application of active disturbance rejection control to integrated flight-propulsion control. 2010 Chinese Control and Decision Conference (CCDC), Xuzhou, China, 2565-2569.         [ Links ]

26. Castro-Linares, R., Álvarez-Gallegos, Ja., Vásquez-López, V. (2001). Sliding mode control and state estimation for a class of nonlinear singularly perturbed systems. Dynamics and CAutomatic Flight Control. Design and Research Corporation (DAR corporation), Lawrence, Kansas, USA, 1(1), 10-35.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License