SciELO - Scientific Electronic Library Online

vol.18 issue2EditorialAn Adaptive Random Search for Unconstrained Global Optimization author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.2 México Apr./Jun. 2014 

Artículos regulares


A KKT Simplex Method for Efficiently Solving Linear Programs for Grasp Analysis Based on the Identification of Nonbinding Constraints


Un método simplex KKT para resolver eficientemente programas lineales para análisis de la sujeción basado en la identificación de restricciones no atadas


Alejo Mosso-Vázquez1, David Juárez-Romero1, Marco Antonio Cruz-Chávez1, and Luis Enrique Sucar2


1 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Cuernavaca, Morelos, Mexico,,

2 Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, Puebla, Mexico



A one-phase efficient method to solve linear programming (LP) problems for grasp analysis of robotic hands is proposed. Our method, named as KKT Simplex method, processes free variables directly while choosing the entering and leaving variables, which makes it a one-phase method able to start at any point of the set of feasible solutions. Besides, the proposed method lowers the number of simplex steps by an angular pricing strategy to choose the entering variable. Moreover, the method reduces the size of an LP problem by the identification of nonbinding constraints that preserves the Karush-Kuhn-Tucker (KKT) cone. We developed the KKT Simplex method by incorporating to the well-known revised simplex method the following components: a method to process free variables, a pricing strategy, and an identification method. We solve LP problems of grasp analysis to test the efficiency and the one-phase nature of the proposed method.

Keywords: KKT Simplex method, linear programming, grasp analysis, nonbinding constraints.



Se propone un método eficiente de una fase para resolver problemas de programación lineal (LP) para análisis de la sujeción por manos robóticas. El método, nombrado como método Simplex KKT, procesa variables libres directamente mientras selecciona las variables entrante y saliente, lo que lo convierte en un método de una fase que es capaz de iniciar en cualquier punto del conjunto de soluciones factibles. Además, el método disminuye el número de pasos simplex por una estrategia angular de costo para seleccionar la variable entrante. Aún más importante, el método reduce el tamaño del problema LP por identificación de restricciones no atadas que preserva el cono Karush-Kuhn-Tucker (KKT). Desarrollamos el método Simplex KKT por la incorporación al bien conocido método simplex revisado de los siguientes componentes: un método para procesar variables libres, una estrategia de costo, y un método de identificación. Resolvemos problemas LP de análisis de la sujeción para probar la eficiencia y la naturaleza de una fase del método propuesto.

Palabras clave: Método Simplex KKT, programación lineal, análisis de la sujeción, restricciones no atadas.





1. Al-Najjar, C. & Behnam, M. (2011). Hybrid LP: Finding Advanced Starting Points for Simplex, and Pivoting LP Methods. Computers & Operations Research, 38(2), 427-434.         [ Links ]

2. Andersen, E.D. (2001). Linear optimization: Theory, methods and extensions. Retrieved from         [ Links ]

3. Andersen, E.D. & Ye, Y. (1996). Combining Interior-Point and Pivoting Algorithms for Linear Programming. Management Science, 42(12), 1719-1731.         [ Links ]

4. Bazaraa, M.S., Sherali, H.D., & Shetty, C.M. (2006). Nonlinear Programming Theory and Algorithms. Hoboken, N.J.: Wiley-Interscience.         [ Links ]

5. Bicchi, A. (1995). On the Closure Properties of Robotics Grasping. The International Journal of Robotics Research, 14(4), 319-334.         [ Links ]

6. Borgwardt, K.H. (1987). The Simplex Method, A probabilistic Analysis. Berlin; New York: Springer Verlag.         [ Links ]

7. Brearley, A.L., Mitra, G., & Williams, H.P. (1975). Analysis of Mathematical Programming Problems Prior to Applying the Simplex Algorithm. Mathematical Programming, 8(1), 54-83.         [ Links ]

8. Chvatal, V. (1983). Linear Programming. New York: W. H. Freeman.         [ Links ]

9. Corley, H.W., Rosenberger, J., Yeh, W.C., & Sung, T.K. (2006). The Cosine Simplex Algorithm. The International Journal of Advanced Manufacturing Technology, 27(9-10), 1047-1050.         [ Links ]

10. Dantzig, G.B. (1963). Linear Programming and Extensions. New Jersey, UK: Princeton University Press.         [ Links ]

11. Ding, D. (2001). Grasp Synthesis of Multi-fingered Robotic Hands. PhD Thesis. Chinese University of Hong Kong, Hong Kong, China.         [ Links ]

12. El-Khoury, S., Sahbani, A., & Bidaud, P. h2011). 3D Objects Grasps Synthesis: A Survey. 13th World Congress in Mechanism and Machine Science, Guanajuato, México.         [ Links ]

13. Floudas, C.A. & Pardalos, P.M. (2009). Encyclopedia of Optimization. New York: Springer.         [ Links ]

14. Fukuda, K. & Terlaky, T. (1997). Criss-Cross Methods: A Fresh View on Pivot Algorithms. Mathematical Programming, 79(1-3), 369-395.         [ Links ]

15. Gal, T. (1995). Postoptimal Analyses, Parametric Programming, and Related Topics: degeneracy, multicriteria decision making, redundancy. Berlin; New York: Walter de Gruyter.         [ Links ]

16. Gondzio, J. & González-Brevis, P. (2012). A New Warmstarting Strategy for the Primal-Dual Column Generation Method. University of Edinburgh, Edinburgh, UK. (Technical Report ERGO 12-007).         [ Links ]

17. Harris, P.M.J. (1973). Pivot Selection Methods of the Devex LP Code. Mathematical Programming, 5(1), 1-28.         [ Links ]

18. Illés, T., Szirmai, & Terlaky, T. (1996). The Finite Criss-Cross Method for Hyperbolic Programming. (Report 96-103). Delft, The Netherlands: The Faculty of Technical Mathematics and Informatics.         [ Links ]

19. Junior, H.V. & Lins, M.P.E. (2005). An improved initial basis for the Simplex algorithm. Computer and Operations Research, 32(8), 1983-1993.         [ Links ]

20. Kaluzny, B.L. (2001). Finite Pivot Algorithms and Feasibility. Master of Science Thesis. McGill University, Montreal, Canada.         [ Links ]

21. Karwan, M.H., Lotfi, V., Telgen, J., & Zionts, S. (1983). Redundancy in Mathematical Programming. Berlin; New York: Springer-Verlag.         [ Links ]

22. Lippiello, V., Siciliano, B., & Villani, L. (2013). Multi-fingered grasp synthesis based on the object dynamic properties. Robotics and Autonomous Systems, 61(6), 626-636.         [ Links ]

23. Liu, Y.H. (1999). Qualitative Test and Force Optimization of 3-D Frictional Form-Closure Grasps Using Linear Programming. IEEE Transaction of Robotics and Automation, 15(1), 163-173.         [ Links ]

24. Megido, N. (1991). On Finding Primal-Dual Optimal Bases. ORSA Journal on Computing, 3(1), 63-65.         [ Links ]

25. Mishra, B., Schwartz, J.T., & Sharir, M. (1987). On the Existence and Synthesis of Multifinger Positive Grips. Algorithmica, 2(1-4), 541-558.         [ Links ]

26. Mosso-Vázquez, A. (2012). Método Simplex KKT para la Solución del Análisis de la Sujeción por Manos Robóticas. Tesis de Doctorado. Universidad Autónoma del Estado de Morelos (UAEM), México.         [ Links ]

27. Mulmuley, K. (1994). Computational Geometry. Englewood Cliffs, NJ: Prentice Hall.         [ Links ]

28. Paparrizos, K., Samaras, N., & Stephanides, G. (2003). A New Efficient Primal Dual Simplex Algorithm. Computers & Operations Research, 30(9), 1383-1399.         [ Links ]

29. Paulraj, S. & Sumathi, P. (2010). A Comparative Study of Redundant Constraints Identification Methods in Linear Programming Problems. Mathematical Problems in Engineering, Volume 2010, Article ID 723402.         [ Links ]

30. Paulraj, S. & Sumathi, P. (2012). A New Approach for Selecting a Constraint in Linear Programming Problems to Identify the Redundant Constraints. International Journal of Scientific and Engineering Research, 3(8), 1345-1348.         [ Links ]

31. Rao, C.R. (2002). Linear Statistical Inference and Its Applications (2nd ed.). New York: Wiley.         [ Links ]

32. Roa, M.A. & Suarez, R. (2007). Geometrical approach for grasp synthesis on discretized 3D objects. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, 2007), San Diego, CA, 3283-3288.         [ Links ]

33. Roa, M.A. & Suarez, R. (2009). Computation of Independent Contact Regions for Grasping 3-D Objects. IEEE Transactions on Robotics, 25(4), 839-850.         [ Links ]

34. Sahbani, A., El-Khoury, S., & Bidaud, P. (2012). An overview of 3D object grasp synthesis algorithms. Robotics and Autonomous Systems, 60(3), 326-336.         [ Links ]

35. Salisbury Jr., J.K. (1982). Kinematic and Force Analysis of Articulated Hands. PhD. dissertation, Stanford University, Stanford, CA.         [ Links ]

36. Shang, S. (1997). New Variants of Finite CrissCross Pivot Algorithms for Linear Programming. European Journal of Operational Research, 116(3), 607-614.         [ Links ]

37. Terlaky, T. (1985). A Convergent Criss-Cross Method. Optimization: A Journal of Mathematical Programming and Operations Research, 16(5), 683-690.         [ Links ]

38. Thompson, G.L., Tonge, F.M., & Zionts, S. (1966). Techniques for Removing Nonbinding Constraints and Extraneous Variables from Linear Programming Problems. Management Science, 12(7), 588-608.         [ Links ]

39. Trigos, F. (2002). Sobre la Reducción de Modelos de Programación Lineal. Métodos Numéricos en Ingeniería y Ciencias Aplicadas, 1, 409-418.         [ Links ]

40. Trigos-Salazar, F., Frausto-Solís, J. F. and Rivera-López, R. (2002). A Simplex-Cosine Method for Solving Hard Linear Problems. Advances in Simulation, System Theory and Systems Engineering, WSEAS Press, ISBN 960852 70X, pp 27-32.         [ Links ]

41. Trinkle, J.C. (1992). On the Stability and Instantaneous Velocity of Grasped Frictionless Objects. IEEE Transactions on Robotics and Automation, 8(5), 560-572.         [ Links ]

42. Wright, S.J. (1997). Primal-Dual Interior-Point Methods. Philadelphia: The Society for Industrial and Applied Mathematics.         [ Links ]

43. Ye, Yinyu (1997). Interior point Algorithms Theory and Analysis. John Wiley and Sons, Inc.         [ Links ]

44. Yeh, W.C. & Corley, H.W. (2009). A simple direct cosine simplex algorithm. Applied mathematics and Computation, 214(1), 178-186.         [ Links ]

45. Zionts, S. (1969). The Criss-Cross Method for Solving Linear Programming Problems. Management Science, 15(7), 426-445.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License