SciELO - Scientific Electronic Library Online

 
vol.17 issue4On the NP-Completeness of Computing the Commonality Among the Objects Upon Which a Collection of Agents Has Performed an ActionA New Measure of Circularity Based on Distribution of the Radius author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.17 n.4 México Oct./Dec. 2013

 

Artículos regulares

 

Conteo de modelos en la clase sintáctica 2μ-3MON

 

Model Counting in the 2μ -3MON Syntactic Class

 

Carlos Guillén, Rafael Lemuz, e Irene Ayaquica

 

Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico cguillen@cs.buap.mx, rlemuz@cs.buap.mx, ayaquica@cs.buap.mx.

 

Article received on 08/06/2012
Accepted on 17/06/2013.

 

Resumen

El problema de conteo de modelos en formulas Booleanas es un problema #P-completo, es decir, no se conocen algoritmos deterministas en el modelo clásico de computabilidad (máquinas de Turing) que realice este conteo con complejidad en tiempo polinomial. La dificultad persiste aún imponiendo condiciones mas restrictivas sobre las clases sintácticas de fórmulas Booleanas. En este artículo presentamos una familia tratable dentro de la clase sintáctica 2μ-3MON. La identificación de esta familia se hace a travos del hipergrafo asociado a estructuras simples como cadenas y ciclos. Se identifican también operadores matriciales que actúan sobre estas estructuras; estos operadores conducen a algoritmos eficientes que efectúan el conteo de modelos sobre la familia identificada en tiempo lineal con respecto al número de clausulas de la fórmula instanciada, a diferencia de los métodos basados en invariantes hipergráficos (como el ancho de árbol) que realizan este conteo en tiempo cúbico.

Palabras clave: #SAT, clase sintáctica, hipergrafo.

 

Abstract

The counting model problem in Boolean formulas is #P-complete, i.e., there is no known deterministic algorithm in the classical computability model (Turing machine) that makes this count in polynomial time. The difficulty persists even imposing more restrictive conditions on the syntactic classes of Boolean formulas. In this paper we present a treatable family within the syntactical class 2μ-3MON. The identification of this family is done by using the hypergraph associated with simple structures such as chains and cycles. Then, matrix operators acting over these structures are identified; these operators lead to efficient algorithms that perform the model counting on the identified family in linear time for the number of clauses in the instantiated formula; unlike hypergraphic invariant based methods (such as tree width), which perform the count in cubic time.

Keywords: #SAT, syntactic class, hypergraph.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Agradecemos a los revisores sus valiosas sugerencias y comentarios. Consideramos que fueron de gran utilidad para el enriquecimiento de nuestro trabajo.

 

Referencias

1. Bautista, C. & Guillen, C. (2012). Fibonacci numbers of generalized zykov sums. Journal of Integer Sequences, 1-22.         [ Links ]

2. Bubley, R. (2001). Randomized algorithms: Approximation, generation, and counting. In Distinguished dissertations. Springer, 1-20.         [ Links ]

3. Bubley, R. & Dyer, M. (1997). Graph orientations with no sink and an approximation for a hard case of #sat. In Proceedings of the third annual ACM symposium on Theory of computing. 248-257.         [ Links ]

4. Cook, S. (1971). The complexity of theorem proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing. 151-158.         [ Links ]

5. Courcelle, B., Makowsky, J., & Rotics, U. (2001). On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics, 23-52.         [ Links ]

6. Diestel, R. (2005). Graph Theory. Springer-Verlag.         [ Links ]

7. Dyer, M. & Greenhil, L. (1997). #p-completeness proofs for colourings and independent sets. In Technical Report 97.47, School of Computer Studies, University of Leeds.         [ Links ]

8. Fischer, E., Makowsky, J., & Ravve, E. (2008). Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4), 511-529.         [ Links ]

9. Gottlob, G., Grohe, M., N., M., Samer, M., & F., S. (2005). Hypertree decompositions: structure, algorithms, and applications. In Proceedings of Graph-Teoretic Concepts in Computer Science. LNCS 3787, 1-15.         [ Links ]

10. Mezey, P. (1989). Topological Methods in Chemistry. John Wiley & Sons, Inc.         [ Links ]

11. Nebel, B. (1991). Belief revision and default reasoning: Syntax-based approaches. In Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning. Cambridge, MA, USA, 417-428.         [ Links ]

12. Nishimura, N., Ragde, P., & Szeider, S. (2006). Solving #sat using vertex covers. In Proc. Ninth International Conference on Theory and Applications of Satisfiability Testing. LNCS 4121, 396-409.         [ Links ]

13. Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2), 273-302.         [ Links ]

14. Sinclair, A. (1993). Algorithms for Random Generation and Counting: A Markov Chain Approach. Cambridge, Masssachusetts, Boston: Birkhauser Verlag.         [ Links ]

15. Vadhan, S. (1995). The Complexity of Counting. Harvard University, Cambridge, Massachusetts.         [ Links ]

16. Vadhan, S. (2001). The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput., 31(2), 398-427.         [ Links ]

17. Valiant, L. (1979). The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3), 410-421.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License