SciELO - Scientific Electronic Library Online

 
vol.13 issue3Evolutionary Algorithm for the Vehicles Routing Problem with Time Windows Based on a Constraint Satisfaction Technique author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.13 n.3 Ciudad de México Jan./Mar. 2010

 

Artículos

 

Time Coordination by Time Adaptive Function

 

Coordinación de Relevadores de Sobrecorriente con Funciones Adaptativas de Tiempo

 

Arturo Conde Enríquez1*, Ernesto Vázquez Martínez1** and Juan Carlos Escobar Martínez2

 

1 Universidad Autónoma de Nuevo León, Monterrey, NL, México. *con_de@yahoo.com, **evm@ieee.org

2 Prolec GE in technology development, Monterrey, NL, México. Juan.Escobar@ge.com

 

Article received on May 09, 2007
Accepted on December 04, 2008

 

Abstract

This paper presents a new coordination process for time overcurrent relays. The purpose of the coordination is to find a time element function that allows it to operate using a constant back–up time delay for any fault current. Then, a simple methodology is proposed that improves the time coordination even with the presence of distributed generation. Experiments were carried out in a laboratory test situation using signals from a power electrical system physics simulator. A virtual prototype of the time overcurrent relay with adaptive algorithms was developed using real time acquired signals. The tests showed the enhanced performance of the overcurrent relay.

Keywords: Time overcurrent relay, coordination, distributed generation.

 

Resumen

En este artículo se presenta un nuevo proceso de coordinación de relevadores de sobrecorriente de tiempo inverso. El objetivo del proceso de coordinación propuesto es determinar una función de tiempo que permita un intervalo constante de tiempo de respaldo para cualquier valor de corriente de falla. Se propone una metodología que mejora la coordinación aun con la presencia de generación distribuida. Se realizaron pruebas de laboratorio usando señales provenientes de un simulador físico de sistemas eléctricos de potencia. Se desarrolló un prototipo virtual de un relevador de sobrecorriente con los algoritmos adaptativos propuestos y se realizó la validación de los mismos usando señales en tiempo real. Las pruebas realizadas mostraron un mejor desempeño del relevador de sobrecorriente.

Palabras clave: Relevador de tiempo inverso, coordinación, generación distribuida.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Girgis, A. & Brahma, S. (2001). Effect of distributed generation on protective device coordination in distribution system. Power Engineering, 2001. LESCOPE '01, Halifax, Canada, 115–119.        [ Links ]

2. So, C.W. & Li, K.K. (2002). Protection relay coordination on ring–fed distribution network with distributed generations. TENCON '02 Proceedings, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 3, 1885 –1888.        [ Links ]

3. Recommended practice for protection and coordination of industrial and commercial power systems. IEEE Buff Book Std 242, 1990.        [ Links ]

4. Guide for protective relaying of utility–consumer interconnections. IEEE Std C37.95, 2002.        [ Links ]

5. Recommended Practice for Electric Power Distribution for Industrial Plants. ANSI/IEEE Std 141, 1986.        [ Links ]

6. Chen Y., Yin, X., Zhang, Z. & Chen, D. (2003). The research of the overcurrent relays based on phase–to–phase differential current –adaptive setting and coordination. Transmission and Distribution Conference and Exposition, 2003 IEEE PES, Dallas, USA, 1, 250 – 255.        [ Links ]

7. Tunyagul, T., Crossley, P., Gale, P. & Zhao, J. (2000). Design of a protection relay for use with a measuring CT. Power Engineering Society Summer Meeting IEEE, Seattle, USA, 3, 1390–1395.        [ Links ]

8. Vishwakarma, D.N. & Moravej, Z. (2001). ANN based directional overcurrent relay. Transmission and Distribution Conference and Exposition 2001IEEE/PES, Atlanta, USA, 1, 59 – 64.        [ Links ]

9. Lotfi–fard, S., Faiz, J. & Iravani, R. (2007). Improved Overcurrent Protection Using Symmetrical Components. IEEE Transactions on Power Delivery, 22(2), 843 – 850.        [ Links ]

10. Zamora, I., Mazon, A.J., Sagastabeitia, K.J. & Zamora, J.J. (2007). New Method for Detecting Low Current Faults in Electrical Distribution Systems. IEEE Transactions on Power Delivery, 22(4), 2072 – 2079.        [ Links ]

11. Shah, K.R., Detjen, E.D. & Phadke, A.G. (1988). Feasibility of adaptive distribution protection system using computer overcurrent relaying concept. IEEE Transactions on Industry Applications, 24(5), 792–797.        [ Links ]

12. Sachdev, M.S., Sidhu, T.S., Chattopadhyay, B., Takuldar, B., Mc–Donald, G. & Chan, R. (1995). Design and evaluation of an adaptive protection system for a distribution network. Cigré Study Committee 34 Colloquium, Stockholm, Sweden, 202.        [ Links ]

13. Standard Inverse–Time Characteristic Equations for Overcurrent Relays. IEEE Std C37.112–1996, 1996.        [ Links ]

14. Sachdev, M.S., Singh, J. & Fleming, R.J. (1978). Mathematical models representing time–current characteristics of overcurrent relays for computer application. IEEE Power Engineering Society Winter Meeting, New York, USA, 131(5), 1–8.        [ Links ]

15. Single Input Energizing Measuring Relays with Dependent Specified Time. IEC Standard 255–4, 1976.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License