SciELO - Scientific Electronic Library Online

 
vol.12 issue4A vision based control platform for Industrial Robot RehabilitationControlling the Strongly Damping Inertia Wheel Pendulum via Nested Saturation Functions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.12 n.4 México Apr./Jun. 2009

 

Artículos

 

Modeling and Tip Position Control of a Flexible Link Robot: Experimental Results

 

Modelación y Control de Posición del Extremo de un Robot de Eslabón Flexible: Resultados Experimentales

 

Juan Fernando Peza Solís*, Gerardo Silva Navarro** and Rafael Castro Linares***

 

Centro de Investigación y de Estudios Avanzados del I.P.N. Departamento de Ing. Eléctrica, Sección de Mecatrónica Av. Instituto Politécnico Nacional 2508. 07360 México D.F., México. E–mails: jpeza@cinvestav.mx*, gsilva@cinvestav.mx**, rcastro@cinvestav.mx***.

 

Article received on March 10, 2008
Accepted on September 04, 2008

 

Abstract

This work describes the modeling and control of an experimental platform associated to a single link flexible robot, whose motion is restricted to an horizontal plane, thus neglecting the gravity effects. The modeling problem is addressed using the so–called Euler–Bernoulli beam equation. The design, construction and integration of an experimental set–up developed for this work is also presented. Two main control schemes are then devised for controlling the end tip position of the flexible link, the passive velocity feedback and strain feedback approaches. Finally, the overall system performance is illustrated by some experimental results obtained with both control methods.

Keywords: Flexible link, Modal coordinates, Passivity based control, Strain feedback.

 

Resumen

En este trabajo se describe la modelación y control de una plataforma experimental de un robot con un eslabón flexible, cuyo movimiento se restringe a un plano horizontal. El eslabón flexible es una viga larga de acero con poco espesor, por lo que su ecuación de movimiento se obtiene a partir de la ecuación de Euler–Bernoulli, que describe a un sistema con masa y rigidez distribuida a lo largo de su coordenada espacial (longitud). Se describe el diseño, construcción e integración de la plataforma experimental. Para los propósitos de control de la posición del extremo libre se aplican dos esquemas de control, el enfoque basado en la retroalimentación pasiva de la velocidad y otro enfoque reciente conocido como retroalimentación del esfuerzo. Finalmente, el desempeño dinámico del sistema en lazo cerrado se ilustra mediante algunos resultados experimentales.

Palabras clave: Control basado en pasividad, Eslabón flexible, Coordenadas modales, Retroalimentación de esfuerzo.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Belleza, F., Lanari, L. and Ulivi, G. "Exact modeling of the slewing link", Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 734–739, Cincinnati, USA, 1990.        [ Links ]

2. Peza–Solis, J.F. Design, construction, modelling and control of a flexible beam robot arm, M.Sc. Thesis (in Spanish), CINVESTAV–IPN, Department of Electrical Engineering, Mexico City, Mexico, 2008.        [ Links ]

3. Cheong, J. and Lee, S. "Linear PID composite controller and its tuning for flexible link robots", J. of Vibration and Control, 14(3), pp. 291–318, 2008.        [ Links ]

4. Ge, S.S., Lee, T.H. and Zhu, G. "Improving regulation of a single–link flexible manipulator with strain feeback", IEEE Trans. on Robotics and Automation, 14(1), pp. 179–185, 1998.        [ Links ]

5. M. Herrera, R. Castro, and Glumineau, A. "Passivity–based control for tip regulation of a flexible beam", Proc. of the 3rd IASTED, Int. Conf. on Robotics and Manufacturing, pp. 134–137, Cancún, Q.R., México, 1995.        [ Links ]

6. Khalil, H.K. Nonlinear Systems, Prentice–Hall, NJ, 1996.        [ Links ]

7. Kruise, L. Modelling and control of a flexible beam and robot arm, PhD Thesis, University of Twente, Enschede, The Netherlands, 1990.        [ Links ]

8. Meirovitch, L. Fundamentals of Vibrations, McGraw–Hill, NY, 1986.        [ Links ]

9. Saad, M., Saydy, L. and Akhrif, O. "Noncollocated passive transfer functions for flexible link robot", Proc. of the IEEE Int. Conf. on Control Applications, pp. 971–975, Anchorage, Alaska, 2000.        [ Links ]

10. Wang, D. and Vidyasagar, M. "Passive control of a stiff flexible link", The Int. J. of Robotics Research, 11(6), pp. 572–578, 1992.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License