SciELO - Scientific Electronic Library Online

 
vol.12 issue4Task Based Mechatronic System Design using Differential Evolution StrategiesA vision based control platform for Industrial Robot Rehabilitation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.12 n.4 México Apr./Jun. 2009

 

Artículos

 

Fast Adaptive Trajectory Tracking Control for a Completely Uncertain DC Motor via Output Feedback

 

Control Adaptable Rápido por Realimentación de Salida para Seguimiento de Trayectorias en un Motor de C. C. Completamente Desconocido

 

H. Sira Ramírez*, E. Barrios Cruz** and R. Márquez Contreras***

 

Departamento de Ingeniería Eléctrica, Cinvestav, Av. Instituto Politécnico Nacional, San Pedro Zacatenco, C.P. 07360, A.P. 14–740, México, D.F. 07300, México. E–mails: hsira@cinvestav.mx* ; ebarrios@cinvestav.mx** ; rmarquez@cinvestav.mx***.

 

Article received on March 10, 2008
Accepted on September 04, 2008

 

Abstract

An algebraic parameter identification method, developed for fast, on–line, computation of unknown linear system parameters, is here used for the fast adaptive output feedback control of a completely unknown dc motor, subject to constant perturbation load torques while solving a reference trajectory tracking task. An output feedback controller of the Generalized Proportional Integral (GPI) type, written in classical compensation network form, is proposed for the perturbed output trajectory tracking problem. The fast adaptation of system parameters is carried out, both, on the classical compensating network parameters and on the conformation of the feed–forward control input signal. Experimental results validate the effectiveness of the proposed approach.

Keywords: Algebraic identification, DC motors, Adaptive control.

 

Resumen

Utilizando el método algebraico para la identificación de los parámetros desconocidos en sistemas lineales se sintetiza un controlador adaptable rápido, implementado en línea, para el control de seguimiento de referencia de velocidad angular en un motor de corriente continua sujeto a una perturbación de carga constante. Para resolver el problema de seguimiento de salida en presencia de perturbaciones, se propone un controlador del tipo Proporcional Integral Generalizado (GPI) por retroalimentación de salida escrito en forma de red de compensación clásica. La adaptación rápida de los parámetros del sistema se lleva a cabo tanto en los parámetros que definen la red de compensación clásica como en la expresión de la señal de pre–compensación de entrada. El método propuesto se valida mediante resultados experimentales.

Palabras clave: Identificación algebráica, Motores de c.c., Control adaptable.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Appendix

 

References

1. Aström, K. J., and B. Wittenmark, Adaptive Control, 2nd Edition. Addison–Wesley Publishing Company, 1995.        [ Links ]

2. Elker, I., "Open loop and closed loop experimental on line itification of a thdenree mass electromechanical system" Mechatronics, 14: 549–665, 2004.        [ Links ]

3. Fliess, M., R. Márquez, E. Delaleau and H. Sira–Ramírez, " Coecteurs Proportionnels–Intègraux Généralisés", ESAIM: Control, Optimization and Calculus of Variations, 7(2):23–41, 2002.        [ Links ]

4. Fliess, M., and H. Sira–Ramírez" An algebraic framework for linear identification", ESAIM, Control, Optimization and Calculus of Variations, 9:151–168, 2003.        [ Links ]

5. Fliess, M., and H. Sira–Ramírez" Closed–loop paametric identification for continuous time linear systems" in Continuous Time Model Identification from Sampled Data, H. Granier & L. Wang (Eds.), Springer, Berlin, 2007.        [ Links ]

6. Forssell, U.. and L. Ljung, "Closed–loop identification revisited". Automatica, 35:1215–1241, 1999.        [ Links ]

7. Jang, J.O., and G. J. Jeon, " A parallel neuro–controller for DC motors containing nonlinear friction". Neurocomputing, 30:233–248, 2000.        [ Links ]

8. Kara, T., and Y. Elker, "Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments", Energy Conversion and Management, 45(7–8): 1087–1106, 2004.        [ Links ]

9. Lakshminarayanan, S., G. Emoto, S. Ebara, K. Tomida and S.L. Shah, "Closed–loop identification and control loop reconfiguration: an industrial case study". J. Process Control, 11:587–599, 2001.        [ Links ]

10. Levine, W.S., Control System Applications, CRC Press, Boca Raton, 2000.        [ Links ]

11. Sira–Ramírez, H., " Sliding Modes, Delta–modulators, and Generalized Proportional Integral Control of Linear Systems" Asian Journal of Control, 5(4):467–475, 2003.        [ Links ]

12. Sira–Ramírez, H., R. Márquez and M. Fliess, " Sliding Mode Control of DC–to–DC Power Converters using Integral Reconstructors" International Journal of Robust and Nonlinear Control, 12(13): 1173–1186, 2002        [ Links ]

13. Sira–Ramírez, H., and R. Silva–Ortigoza, Control Design Techniques in Power Electronics Devices, Springer–Verlag, Power Systems Series, London, 2006.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License