SciELO - Scientific Electronic Library Online

 
vol.12 issue1Mexican Experience in Spanish Question AnsweringFormal Support to Security Protocol Development: A Survey author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.12 n.1 México Jul./Sep. 2008

 

An Overview of Argumentation Semantics

 

Una Revisión de las Semánticas de Argumentación

 

Juan Carlos Nieves1, Mauricio Osorio2 and Ulises Cortés1

 

1 Universitat Politècnica de Catalunya Software Department (LSI) c/Jordi Girona 1–3, E08034, Barcelona, Spain E–mail: jcnieves@lsi.upc.edu, ia@lsi.upc.edu

2 Universidad de las Américas – Puebla CENTIA, Sta. Catarina Mártir Cholula, Puebla, 72820 México E–mail: osoriomauri@googlemail.com

 

Article received on April 14, 2008
Accepted on June 20, 2008

 

Abstract

The main purpose of argumentation theory is to study the fundamental mechanisms that humans use in argumentation, and to explore ways to implement these mechanisms on computers. During the last years, argumentation has been gaining increasing importance in Computer Science, especially in areas as Artificial Intelligence, e–commerce, Multi–agent Systems and Decision–Making.

In this paper, we present a brief overview of abstract argumentation semantics. In order to promote and disseminate this young area, we describe the fundamental role of argumentation in a medical application. Moreover, we present some results in order to close the huge gap between argumentation theory and argumentation systems. We will see that these results also suggest a general method for exploring some challenges in argumentation theory.

Keywords: Argumentation Theory, Logic Programming, Non–Monotonic Reasoning.

 

Resumen

El principal propósito de la teoría de argumentación es el estudio de los mecanismos básicos que los humanos usan en argumentación y además explorar métodos para implementar dichos mecanismos en las computadoras. Durante los últimos años, argumentación ha ganado importancia en el área de las ciencias de la computación muy en especial en los campos de la inteligencia artificial, comercio electrónico, sistemas multi – agentes y toma de decisiones.

En este articulo, presentamos una breve revisión de los patrones mas aceptados en la selección de argumentos — a dichos patrones se les llama semánticas de argumentación. Con el propósito de promover y difundir esta joven área de investigación, se describirá el uso de argumentación en una aplicación médica. Además, presentaremos algunos resultados que contribuyen a la integración de modelos teóricos de argumentación a sistemas reales basados en argumentación.

Palabras Clave: Teoría de Argumentación, Programación Lógica, Razonamiento No Monótono.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgement

We are grateful to anonymous referees for their useful comments. J.C. Nieves thanks to CONACyT for his PhD Grant. J.C. Nieves and U. Cortés would like to acknowledge support from the EC funded project SHARE–it: Supported Human Autonomy for Recovery and Enhancement of cognitive and motor abilities using information technologies (FP6–IST–045088). The views expressed in this paper are not necessarily those of the SHARE–it consortium.

 

References

1. Alsinet T., Chesñevar C., Godo L., Sadri S. and Simari G. Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification. International Journal of Approximate Reasoning, 18(3): 711–729, 2008.        [ Links ]

2. ASPIC:Project. Deliverable D2.2:Formal semantics for inference and decision–making. Argumentation Service Plarform with Integrated Components, 2005.        [ Links ]

3. Baral C. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge, 2003.        [ Links ]

4. Baroni P. and Giacomin M. On principle–based evaluation of extension–based argumentation semantics. Artificial Intelligence., 171(10–15): 675–700, 2007.        [ Links ]

5. Baroni P., Giacomin M., and Guida G. SCC–recursiveness: a general schema for argumentation semantics. Artificial Intelligence, 168: 162–210, October 2005.        [ Links ]

6. Ben–Eliyahu–Zohary R. An incremental algorithm for generating all minimal models. Artificial Intelligence, 169(1): 1–22, 2005.        [ Links ]

7. Bench–Capon T. J. M. and Dunne P. E. Argumentation in artificial intelligence. Artificial Intelligence, 171 (10–15): 619–641, 2007.        [ Links ]

8. Besnard P. and Doutre S. Checking the acceptability of a set of arguments. In Tenth International Workshop on Non–Monotonic Reasoning (NMR 2004),, pages 59–64, June 2004.        [ Links ]

9. Brewka G., Niemelä L, and Syrjänen T. Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs. In Proceedings of the 8th European Workshop Logic in Artificial Inteligence JELIA 2002, Springer, 2002.        [ Links ]

10. Caballero F., López–Navidad A., Perea M., Cabrer C., Guirado L. and Solá R. Successful liver and kidney transplantation from cadaveric donor with left–sided bacterial endocarditis. American Journal of Transplantation, 5: 781–787, 2005.        [ Links ]

11. Caminada M. Contamination in formal argumentation systems. In BNAIC 2005 – Proceedings of the Seventeenth Belgium–Netherlands Conference on Artificial Intelligence, Brussels, Belgium, October 17–18, pages 59–65, 2005.        [ Links ]

12. Caminada M. Semi–Stable semantics. In P.E. Dunne and T. J. Bench–Capon, editors, Proceedings of COMMA, volume 144, pages 121–130. IOS Press, 2006.        [ Links ]

13. Caminada M. and Amgoud L. On the evaluation of argumentation formalisms. Artificial Intelligence, 171: 286–310, 2007.        [ Links ]

14. Cayrol C., Doutre S. and Mengin J. On Decision Problems related to the preferred semantics for argumentation frameworks. Journal of Logic and Computation, 13 (3): 377–403, 2003.        [ Links ]

15. Chesñevar C., Maguitman A. G., and Loui R. P. Logical models of argument. A CM Comput. Surv, 32(4):337–383, 2000.        [ Links ]

16. Cortés U., Tolchinsky P., Nieves J.C., López–Navidad A., and Caballero F. Arguing the discard of organs for tranplantation in CARREL. In CATAI 2005, pages 93–105, 2005.        [ Links ]

17. Dimopoulos Y. and Torres A. Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci., 170(1–2): 209–244, 1996.        [ Links ]

18. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/, 1996.        [ Links ]

19. Doutre S. and Mengin J. Preferred Extensions of Argumentation Frameworks: Computation and Query Answering. In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR 2001, volume 2083 of LNAI, pages 272–288. Springer–Verlag, 2001.        [ Links ]

20. Dung P. M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n–person games. Artificial Intelligence, 77(2): 321–358, 1995.        [ Links ]

21. Dung P. M., Kowalski R. A., and Toni F. Dialectic proof procedures for assumption–based, admissible argumentation. Artificial Intelligence, 170(2): 114–159, 2006.        [ Links ]

22. Dung P. M., Mancarella P., and Toni F. Computing ideal sceptical argumentation. Artificial Intelligence, 171(issues 10–15): 642––674, 2007.        [ Links ]

23. Dunne P.E. On concise encodings of preferred extensions. In 9th International Workshop on Non–Monotonic Reasoning (NMR 2002), April 19–21, Toulouse, France, Proceedings, pages 392–398, 2002.        [ Links ]

24. Dunne P. E. Computational properties of argument systems satisfying graph–theoretic constraints. Artificial Intelligence, 171(10–15): 701–729, 2007.        [ Links ]

25. Dunne P.E. and Bench–Capon T. J.M. Complexity in value–based argument systems. In JELIA, volume 3229 of LNCS, pages 360–371. Springer, 2004.        [ Links ]

26. Egly U. and Woltran S. Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas. In Dunne P.E. and Bench–Capon T.J., editors, Proceedings of COMMA, volume 144, pages 133–144. IOS Press, 2006.        [ Links ]

27. Gebser M., Liu L., Namasivayam G., Neumann A., Schaub T., and Truszczynski M. The first answer set programming system competition. In Brewka G. Baral C. and Schlipf J., editors, Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR–07), number 4483 in LNAI, pages 3–17. Springer–Verlag, 2007.        [ Links ]

28. Gelder A. V., Ross K. A., and Schlipf J. S. The well–founded semantics for general logic programs. Journal of the ACM, 383: 620–650, 1991.        [ Links ]

29. Gelfond M. and Lifschitz V. The Stable Model Semantics for Logic Programming. In Kowalski R. and Bowen K., editors, 5th Conference on Logic Programming, pages 1070–1080. MIT Press, 1988.        [ Links ]

30. Governatori G., Maher M. J., Antoniou G., and Billington D. Argumentation Semantics for Defeasible Logic. Journal of Logic and Computation. 14(5): 675–702, 2004.        [ Links ]

31. Governatori G. and Maher M. J. An Argumentation–Theoretic Characterization of Defeasible Logic. ECAI, pp 469–473, 2000.        [ Links ]

32. Gelfond M. and Lifschitz V. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing, 9: 365–385, 1991.        [ Links ]

33. Hitchcock D. and Verheij B. Arguing on the Toulmin Model. Volume 10 of New Essays in Argument Analysis and Evaluation, Springer, 2007.        [ Links ]

34. Jakobovits H. and Vermeir D. Robust semantics for argumentation frameworks. Journal of logic and computation, 9(2): 215–261, 1999.        [ Links ]

35. Leone N., Pfeifer G., Faber W., Calimeri F., Dell'Armi T., Eiter T., Gottlob G., Ianni G., Ielpa G., Koch C., Perri S., and Polleres A.. The dlv system. In JELIA, pages 537–540, 2002.        [ Links ]

36. López A. Implementing pstable In Dávila R., Osorio M., and Zepeda C., editors, Workshop in Logic, Language and Computation, volume 220. CEUR Workshop Proceedings, 2006.        [ Links ]

37. Martinez D. C., Gracia A. J., Simati G. R. On acceptability in abstract argumentation frameworks with an extended defeat relation. In Proc. COMMA 2006, in Frontiers in Artificial Intelligence and Applications, vol 144, IOS Press, pp 273–278, 2006.        [ Links ]

38. Nielsen S.H. and Parsons S. Computing Preferred Extensions for Argumentation Systems with Sets of Attacking Arguments. In P. E. Dunne and T. J. Bench–Capon, Proceedings of COMMA, volume 144, pages 97–108. IOS Press, 2006.        [ Links ]

39. Nieves J. C. Modeling arguments and uncertain information — A non–monotonic reasoning approach. PhD thesis, Software Department (LSI), Technical University of Catalonia, 2008.        [ Links ]

40. Nieves J. C. and Cortés U. Modality argumentation programming. In Proceedings of the conference Modeling Decisions for Artificial Intelligence (MDAI 2006), volume 3885 of Lecture Notes in Computer Science, pages 295–306. Springer, 2006.        [ Links ]

41. Nieves J. C. and Osorio M. Inferring preferred extensions by pstable semantics. In Proceedings of the Latin–American Workshop on Non–Monotonic Reasoning (LA–NMR07) Workshop, volume 286 of CEUR Workshop Proceedings. CEUR–WS.org, 2007.        [ Links ]

42. Nieves J. C., Osorio M., and Cortés U. Modeling argumentation based semantics using non–monotonic reasoning. Research report LSI–05–59–R, Universitat Politècnica de Catalunya, Software Department, Barcelona, Spain, December 2005a.        [ Links ]

43. Nieves J. C., Osorio M., Zepeda C., and Cortés U. Inferring acceptable arguments with answer set programming. In Sixth Mexican International Conference on Computer Science (ENC 2005), pages 198–205. IEEE Computer Science Press, September 2005b.        [ Links ]

44. Nieves J. C., Osorio M., and Cortés U. Supporting decision making in organ transplating using argumentation theory. In LANMR 2006: 2nd Latin American Non–Monotonic Reasoning Workshop, pages 9–14, 2006a.        [ Links ]

45. Nieves J.C., Osorio M., Cortés U., Olmos I., and Gonzalez J. A. Defining new argumentation–based semantics by minimal models. Seventh Mexican International Conference on Computer Science (ENC 2006), pages 210–220. IEEE Computer Science Press, September 2006b.        [ Links ]

46. Nieves J. C., Osorio M., and Cortés U. Modality–based argumentation using possibilistic stable models. In Kibble R., Grasso F., and Reed C., editors, 7th Workshop on Computational Models of Natural Argument (CMNA VII), pages 35–41, Hyderabad, India, January 2007a.        [ Links ]

47. Nieves J.C., Osorio M., and Cortés U. Inferring preferred extensions by minimal models. In Simari G. and Torroni P., editors, Argumentation and Non–Monotonic Reasoning (LPNMR–07 Workshop), pages 114–124, Arizona, USA, 2007b.        [ Links ]

48. Nieves J.C., Osorio M., and Cortés U. Preferred extensions as stable models. Theory and Practice of Logic Programming, in press, http://arxiv.org/abs/0803.3812, 2008.        [ Links ]

49. Osorio M., Arrazola J. R., and Carballido J. L. Logical Weak Completions of Paraconsistent Logics. Journal of Logic and Computation, doi: 10.1093/log–com/exn015, 2008.        [ Links ]

50. Osorio M., Navarro J. A., and Arrazola J. Applications of Intuitionistic Logic in Answer Set Programming. Theory and Practice of Logic Programming 4(3): 325–354, 2004.        [ Links ]

51. Osorio M., Navarro J. A., Arrazola J. R., and Borja V. Logics with Common Weak Completions. Journal of Logic and Computation, 16(6):867–890, 2006.        [ Links ]

52. Parsons S. nd McBurney P. Agumentation–based dialogues for agent co–ordination. Group Decision and Negotiation, 12 (5): 415–439, 2003.        [ Links ]

53. Parsons S., Wooldridge M., and Amgoud L. Properties and complexity of some formal inter–agent dialogues. Journal of Logic and Computation, 13 (3): 347–376, 2003.        [ Links ]

54. Pearce D. Stable inference as intuitionistic validity. Journal of Logic Programming, 38, 79–91, 1999.        [ Links ]

55. Prakken H. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation, 5 (6): 1009–1040, 2005.        [ Links ]

56. Prakken H. and Vreeswijk G. A. W. Logics for defeasible argumentation. In Gabbay D. and Günthner F., editors, Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer Academic Publishers, Dordrecht/Boston/London, second edition, 2002.        [ Links ]

57. Prakken H. Sartor G. A dialectical model of assessing conflicting arguments in legal reasoning. Artificial Intelligence and Law, 3:331–368, 1996.        [ Links ]

58. Rahwan I. and McBurney P. Argumentation technology: Introduction to the special issue. IEEE Intelligence Systems, 22(6): 21–23, 2007.        [ Links ]

59. Reed C. and Norman T., editors. Argumentation Machines, volume 9 of New Frontiers in Argument and Computation. Kluwer Academic Publishers, 2004.        [ Links ]

60. Ricca F. The dlv java wrapper. In Joint Conference on Declarative Programming, AGP–2003, Reggio Calabria, Italy, September 3–5, pages 263–274, 2003.        [ Links ]

61. Simari G. R. and Loui R. P. A Mathemantical treatment of defeasible argumentation and its implementation. Artificial Intelligence, 53:125–157, 1992.        [ Links ]

62. SMODELS. Helsinki University of Technology. http://www.tcs.hut.fi/Software/smodels/, 1995.        [ Links ]

63. Tolchinsky P., Cortés U., Nieves J. C., López–Navidad A., and Caballero F. Using arguing agents to increase the human organ pool for transplantation. In Proc. of the Third Workshop on Agents Applied in Health Care (IJCAI 2005), 2005.        [ Links ]

64. Tolchinsky P., Cortés U., Modgil S., Caballero F., and López–Navidad A. Increasing Human–Organ Transplant Availability:Argumentation–Based Agent Deliberation. IEEE Intelligent Systems: Special Issue on Intelligent Agents in Healthcare, 21 (5): 30–37, November/December 2006.        [ Links ]

65. Vázquez–Salceda J., Cortés U., Padget J., López–Navidad A., and Caballero F. Extending the CARREL System to mediate in the organ and tissue allocation processes: A first approach. Artificial Intelligence in Medicine, 3: 233–258, 2003.        [ Links ]

66. Zepeda C., Osorio M., Nieves J.C., Solnon C., and Sol D. Applications of preferences using answer set programming. In Proc. of the third workshop on Answer Set Programming : Advances in theory and implementation, Bath, UK, 2005.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License