SciELO - Scientific Electronic Library Online

 
vol.10 issue4EditorialContrast Enhancement and Illumination Changes Compensation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.10 n.4 México Jun. 2007

 

Design of Linear Phase IIR Filters with Flat Magnitude Response using Complex Coefficients Allpole Filters

 

Diseño de Filtros IIR de Fase Lineal con Respuesta en Magnitud Plana usando Filtros Todopolo con Coeficientes Complejos

 

Alfonso Fernandez Vazquez1 and Gordana Jovanovic Dolecek2

 

1 School of Electronic Engineering; Xidian University No.2 South TaiBai Road; Xian, Shaanxi 710071; P. R. China afernan@inaoep.mx

2 Department of Electronics; Instituto Nacional de Astrofisica, Optica, y Electronica, INAOE Luis Enrique Erro No. 1; Tonantzintla, Puebla 72840; Puebla, Mexico gordana@inaoep.mx

 

Article received on March 15, 2007
Accepted on September 03, 2007

 

Abstract

This paper presents a new method for the design of linear phase IIR filters with flat magnitude response. The method is based on the design of flat digital allpole filters with complex coefficients. Depending on the parity of the allpole filter order the resulting IIR filter have either real or complex coefficients. The parameters of the design are the same as in traditional IIR filter design, i.e., passband and stopband frequencies, ωp and ωs, passband droop Ap , and stopband attenuation As . Several design examples are provided to illustrate the method. In addition, a design of linear phase modified two–band IIR filter banks and a design of stable IIR filter with an improved group delay are presented as two applications of the proposed method.

Keywords: IIR filters, linear phase, allpole filters, allpass filters, filter banks, improved group delay.

 

Resumen

Este artículo presenta un nuevo método para el diseño de filtros IIR de fase lineal con respuesta en magnitud plana. El método esta basado en el diseño de filtros todopolo con respuesta plana y coeficientes complejos. Dependiendo de la paridad del orden del filtro todopolo, los filtros resultantes IIR tienen coeficientes reales o complejos. Los parámetros de diseño son los mimos que en el diseño tradicional de filtros IIR, esto es, frecuencias de paso y rechazo, ωp y ωs, y atenuaciones en la banda de paso y rechazo, Ap y As. Varios ejemplos de diseño son dados para ilustrar el método. Finalmente, el diseño de bancos de filtros modificado de dos bandas de fase lineal y el diseño de filtros IIR con retardo de grupo mejorado se presentan como dos aplicaciones del método propuesto.

Palabras clave: Filtros IIR, fase lineal, filtros todopolo, filtros pasatodo, banco de filtros, retardo de grupo mejorado.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was supported by CONACyT Mexico under project number 49640.

 

References

1. Argenti, F., Cappellini, V., Sciorpes, A., and Venestsanopoulos, A. N. "Design of IIR linear–phase QMF banks based on complex allpass sections." IEEE Trans. Signal Processing, vol. 44, no. 5, May 1996, pp. 1262–1267.        [ Links ]

2. Djokic, B., Popovic, M., and Lutovac, M. "A new improvement to the Powell and Chau linear phase IIR filters." IEEE Trans. Signal Processing, vol. 46, no. 6, June 1998, pp. 1685–1688.        [ Links ]

3. Fernandez–Vazquez A., and Jovanovic–Dolecek G. "Design of complex allpass filters," IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2004, Montreal, Quebec, Canada, May 2004.        [ Links ]

4. Galand, C. R. and Nussbaumer, H. J. "New quadrature mirror filter structures." IEEE Trans. Acoust., Speech, Signal Processing, vol. 32, no. 3, June 1984, pp. 522–531.        [ Links ]

5. Heck, A. Introduction to Maple. Springer–Verlag, New York, third edition, 2003.        [ Links ]

6. Herley, C. and Vetterli, M. "Wavelets and recursive filter banks." IEEE Trans. Signal Processing, vol. 41, no. 8, August 1993, pp. 2536–2556.        [ Links ]

7. Mitra, S. K. Digital Signal Processing: A computer based approach. Mc Graw Hill, third edition, 2006.        [ Links ]

8. Powell, S. R. and Chau, P. M. "A technique for linear phase IIR filters." IEEE Trans. Signal Processing, vol. 39, no. 11, November 1991, pp. 2425–2435.        [ Links ]

9. Selesnick, I. W. "Formulas for orthogonal IIR wavelet filters." IEEE Trans. Signal Processing, vol. 46, no. 4, April 1998, pp. 1138–1141.        [ Links ]

10. Selesnick, I. W. "Low–pass filter realizable as all–pass sums: Design via a new flat delay filter." IEEE Trans. Circuits Syst. II, vol. 46, no. 1, January 1999, pp. 40–50.        [ Links ]

11. Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.        [ Links ]

12. Vaidyanathan, P. P. and Chen, T. "Structures for anticausal inverses and application in multirate filter banks." IEEE Trans. Signal Processing, vol. 46, no. 2, February 1998, pp. 507–514.        [ Links ]

13. Vaidyanathan, P. P., Regalia, P. A., and Mitra, S. K. "Design of doubly complementary IIR digital filters using a single complex allpass filter, with multirate applications." IEEE Trans. Circuits Syst., vol. 34, no. 4, April 1987, pp. 378–389.        [ Links ]

14. Willson, A. N. and Orchard, H. J. "An improvement to the Powell and Chau linear phase IIR filters." IEEE Trans. Signal Processing, vol. 46, no. 6, June 1994, pp. 2842–2848.        [ Links ]

15. Zhang, X., Kato, A., and Yoshikawa, T. "A new class of orthonormal symmetric wavelet bases using a complex allpass filter." IEEE Trans. Signal Processing, vol. 49, no. 11, November 2001, pp. 2640–2647.        [ Links ]

16. Zhang, X., Muguruma, T., and Yoshikawa, T. "Design of orthogonal symmetric wavelet filter using real allpass filters." Signal Processing, vol. 80, no. 8, August 2000, pp. 1551–1559.        [ Links ]

17. Zhang, X. and Yoshikawa, T. "Design of symmetric orthogonal wavelet filters using a single complex allpass filter." In Proc. IEEE Int. Symp. Circuits Syst. (ISCAS' 99), vol. III. Phoenix, Arizona, March 1999, pp. 367–370.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License