SciELO - Scientific Electronic Library Online

 
vol.10 issue3Cognitive Maps: an Overview and their Application for Student ModelingA Fuzzy Approach on Image Complexity Measure author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.10 n.3 México Jan./Mar. 2007

 

Artículos

 

Computationally Efficient Multiplier–Free Fir Filter Design

 

Diseño Eficiente Computacional de Filtros Fir sin Multiplicadores

 

Gordana Jovanovic Dolecek1 and Sanjit K. Mitra2

 

1 Department of Electronics, Institute INAOE, E. Erro 1, Tonantzintla, 72840, Puebla, Mexico
Email:
gordana@inaoep.mx

2 Department of Electriacl & Computer Engineering, University of California Santa Barbara, USA.
Email:
mitra@ece.ucsb.edu

 

Article received on September 01, 2006; accepted on April 12, 2007

 

Abstract

This paper presents a very simple multiplier–free finite impulse response (FIR) lowpass filter design procedure. It involves approximation of an equiripple FIR by rounding operation and application of the sharpening technique. In that way the overall filter is based on combining one simple filter with integer coefficients. The parameters of the design are the rounding constant and the parameters of the sharpening polynomials such as the order of tangencies m and l. Our analysis indicates that utilizing this approach the required number of total nonzero bits becomes quite low and less than in the minimum number of signed powers–of–two (MNSPT) design. The cost is the increase of the total numbers of sums and the delays.

Key words: FIR filter, equiripple filter, multiplier–free filter, rounding, sharpening.

 

Resumen

En este artículo se describe un simple método para diseño de los filtros de pasa baja con la respuesta de impulso finito (FIR) sin multiplicadores. El método consiste de una aproximación del filtro diseñado con el método Remez usando el redondeo y técnica moldeado. De esta manera el filtro deseado se recibe combinando un filtro simple con los enteros coeficientes. Los parámetros de diseño son la constante de redondeo y los parámetros del polinomio moldeado m y l. Nuestro análisis muestra que necesito numero de bits es bajo y menos que el mínimo numero de bits (MNSPT). El costo es un incremento total de sumas y retrasos.

Palabras clave: Filtro FIR, filtro con iguales rizos, filtro sin multiplicadores, redondeo, moldeado.

 

DESCARGA ARTÍCULO EN FORMATO PDF

 

Acknowledgement

This work is supported by CONACYT grant no. 49640.

 

References

1. J. A Adams and A. N. Williamson, Jr., "A new approach to FIR digital filters with fewer multipliers and reduced sensitivity," IEEE Trans. Circuits and Systems., vol. CAS–30, pp. 277–283, May 1983.        [ Links ]

2. A. Bartolo, B. D. Clymer, R. C. Burges, and J. P. Turnbull, "An efficient method of FIR filtering based on impulse response rounding," IEEE Trans. on Signal Processing, vol. 46, No. 8, pp.2243–2248, August 1998.        [ Links ]

3. M. Bhattacharya and T. Saramaki, "Some observations leading to multiplierless implementation of linear phase filters," Proc. ICASSP 2003, pp. II–517–II–520.        [ Links ]

4. T. S. Chang, Y. H. Chu and C.W. Jen, "Low –power FIR filter realization with differential coefficients and inputs," IEEE Trans on Circuits and Systems: Part II, vol.47, pp.137–145, February 2000.        [ Links ]

5. M. Donadio, " Lost knowledge refound: Sharpened FIR filters, " IEEE Signal Processing Magazine, pp.61–63, September, 2003.        [ Links ]

6. P. Gentili, F. Piaza and A. Uncini, "Improved power–of–two sharpening filter design by genetic algorithm," Proc of IEEE Conference on Acoustics and Signal Processing, vol.3, pp. 1375–1378, May 1996.        [ Links ]

7. R. Harnett, and G. F. Boudreaux–Bartels, "Improved filter sharpening," IEEE Trans on Signal Processing, vol.43, No. 12, pp. 2805–2809, Dec. 1995.        [ Links ]

8. G. Jovanovic Dolecek and S.K. Mitra, "Design of FIR lowpass filters using stepped triangular approximation," Proc. NORSIG 2002, Norway, Oct. 2002.        [ Links ]

9. G. Jovanovic Dolecek and G. Espinosa, "A method for FIR filter design based on quantization and PI technique," Proc. ICCDCS 2000, Cancun, Mexico, pp. S–35–1–S–35–6, May 2000.        [ Links ]

10. G. Jovanovic–Dolecek, M. M–Alvarez and M. Martinez, "One simple method for the design of multiplierless FIR filters," Journal of Applied Research and Technology Vol. 3 No. 2, pp. 125–138, August 2005.        [ Links ]

11. J.F. Kaiser and R.W. Hamming, "Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter," IEEE Trans., Acoust. Speech, Signal Processing, vol. 45, pp. 457–467, February 1997.        [ Links ]

12. K. A. Kotteri, A. E. Bell, and J. E. Carletta, "Quantized FIR Filter Design Using Compensating Zeros," IEEE Signal Processing Magazine, Nov. 2003, pp. 60–67.        [ Links ]

13. Y. C. Lim, "Frequency–response masking approach for the synthesis of sharp linear phase digital filters," IEEE Transactions on Circuits and Systems, vol.CAS 33, pp.357–364, April 1986.        [ Links ]

14. Y. C. Lim, J. B. Evans, and B. Liu, "Decomposition of binary integers into signed powers–of–two terms," IEEE Trans. Circuits and Sysems, vol. CAS–38, pp. 667–672, June 1991.        [ Links ]

15. Y. C. Lim, R. Yang, and D. Li, "Signed Power–of–Two Term Allocation Scheme for the Design of Digital Filters,", IEEE Trans. on Circuits and Systems– II: Analog and Digital Signal Processing, vol.46, No5, May 1999, pp.577–584.        [ Links ]

16. Y. C. Lim and B. Liu, "Design of cascade form FIR filters with discrete valued coefficients," IEEE Trans., Acoust. Speech, Signal Processing, vol. ASSP–36, pp. 1735–1739. Nov. 1988.        [ Links ]

17. S. K. Mitra, Digital Signal Processing – A Computer–Based Approach, Third Edition, McGraw–Hill Inc., New York, 2006.        [ Links ]

18. Y. L. Tai, and T.P. Lin, " Design of multiplierless FIR filters by multiple use of the same filter, Electronic letters, vol.28, pp. 122–123, 1992.        [ Links ]

19. A. P.Vinod, E. M. K. Lai, A. B. Premkumar and C. T. Lau, "FIR filter implementation by efficient sharing of horizontal and vertical common subexpressions," IEE Electronic Letters, vol.39. No.2, pp. 251–253, January 2003.        [ Links ]

20. P. P. Vaidanathan and G. Beitman, "On prefilters for digital filter design," IEEE Trans. on Circuitsand Systems, vol. CAS–32, pp.494–499, May 1985.        [ Links ]

21. A. P. Winod, C. H. Chang, P.K. Meher, and A. Singla, "Low power FIR filter realization using minimal difference coefficients: Part I– Complexity analysis," Proc of the IEEE Conference APCCAS 2006, Singapore, pp. 1549–1552.        [ Links ]

22.   A. P. Winod, C. H. Chang, P.K. Meher, and A. Singla, "Low power FIR filter realization using minimal difference coefficients: Part II– Algorithm," Proc of the IEEE Conference APCCAS 2006, Singapore, pp. 1553–1556.        [ Links ]

23. Wu–Sheng Lu, "Digital Filter Design: Global Solutions via Polynomial Optimization," Proc of the IEEE Conference APCCAS 2006, Singapore, pp.49–52.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License