SciELO - Scientific Electronic Library Online

 
vol.8 issue4Quantifying Contrast Methods through Morphological Gradient author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.8 n.4 México Apr./Jun. 2005

 

Resumen de tesis doctoral

 

Transversal Filter MMIC design for Multi–Gbit/s Optical CDMA Systems

 

Diseño de Filtro Transversal Monolítico Integrado de Microondas ( MMIC) para los Sistemas Ópticos CDMA en el Régimen de Multi–Gbits/s

 

Graduated: Jorge Aguilar Torrentera
Sección de Comunicaciones
ClNVESTAV – I.P.N.
Av. Instituto Politécnico Nacional # 2508,
Col. San Pedro Zacatenco, 07360, México, D.F.
jaguilarumist@yahoo.com
Graduated on: November 27,2004

Supervisor: Izzat Darwazeh
Department of Electronic and Electrical Engineering
University College of London
Torrington Place, London WC1E 7JE
i.darwazeh@ee.ucl.uk

 

Abstract

In this work, the approach of the distributed transversal filter for Optical COMA systems is addressed. It demonstrates that pulse generation and correlation functions can be accomplished in the electrical domain for multi–Gbit/s systems. The practicalities of the approach were assessed using a state of the art GaAs MMIC process. A innovate transversal filter, which is termed the dual drain–line transversal filter, was proposed and designed for speed operations exceeding 40 Gbit/s. A new tap gain weight control technique was designed for the proposed topology so that the filler can be modelled with constant distributed characteristics. A framework based on mixed–mode scattering parameters was derived to investigate the various frequency responses of the filter. Similarly, time domain results based on the full parameters of the MMIC design proves the efficacy of the approach. The filter satisfies the first Nyquist criterion and is suitable for multi–Gbit/s CDMA systems.

Keywords: Fibre Networks, Optical–CDMA Systems, Distributed Amplifiers, HEMTs, Transversal Filter, GaAs MMICs

 

Resumen

Este trabajo de tesis estudia la aplicación de filtros transversales utilizando la técnica de CDMA para los sistemas ópticos de alta velocidad. Se demuestra prácticamente que funciones tales como generación de pulsos y correlación se pueden llevar a cabo utilizando circuitos electrónicos. La viabilidad de estos desarrollos se comprobó mediante el diseño de un circuito monolítico integrado de microondas (MMIC) basado en un proceso comercial de arseniuro de galio (GaAs). Un filtro transversal no reportado con anterioridad, el cual se le denomina filtro transversal con líneas de drenaje dual, fue propuesto y diseñando para velocidades de operación mayores a 40 Gbit/s. Una nueva técnica de control de coeficientes del filtro se diseñó para la topología propuesta de tal forma que el filtro puede ser modelado con características de circuito distribuido constantes. Una estructura de análisis, el cual se basa en parámetros de dispersión de modos mezclados, fue derivada para investigar las diferentes respuestas en frecuencia de la estructura. Similarmente, resultados en el dominio del tiempo que utilizan los parámetros del diseño del circuito integrado muestra la eficiencia de la propuesta. El filtro satisface el primer criterio de Nyquist y es adecuado para sistemas CDMA que trabajan a velocidades de gigabit por segundo.

Palabras Clave: Redes de fibra óptica, Sistemas Ópticos CDMA, Amplificadores Distribuídos, HEMTs (transistores de Alta Movilidad Electrónica), Filtro Transversal, GaAs MMICs (Circuitos de Microondas Monolíticos Integrados de Arseniuro de Galio).

 

DESCARGAR ARTICULO EN FORMATO PDF

 

References

1. Mestdagh, D., Fundamentals of Multiaccess Optical Fiber Networks, Artech House, Norwood, MA, 1995        [ Links ]

2. Jackson, K., Newton, S., Moslehi, B., Tur, M., Cutler, C., Goodman, J. and Shaw, J., "Optical fiber delay–line signal processing", IEEE Transactions on Microwave Theory and Techniques, 33(3), 1985, pp.193–21O        [ Links ]

3. Prucnal, P., Santoro, M. and Sehgal, S., "Ultrafast all–optical synchronous multiple access fiber networks", IEEE Journal on Selected Areas on Communications, 4(9), December 1986, pp. 1484–1493        [ Links ]

4. Fathallah, H. and Leslie, R, "Robust aplical FFH–CDMA communications: coding in place of frequency and temperature controls", Journal of Lightwave Technology, 17(8), 1999, pp. 1284–1293        [ Links ]

5. Teh,P., Petropoulus, P., Ibsen, M and Richardson, D., "A comparative study of the performance of seven– and 63–chip aplical code–division multiple–access encoders and decoders based on superstructured fiber Bragg gratings", Journal of Lighlwave Technology 19(9),2001, pp. 1352–1364        [ Links ]

6. Smith, D., Gough, P. and Taylor, D., "Noise limits of optical spectral–encoding CDMA systems", Electronics Letters, 31(17), 1995, pp 1469–1470        [ Links ]

7. Salehi, J.A., "Code division multiple–access techniques in aplical fiber networks–Part I: fundamental principies", IEEE Transactions on Communications, 37(8),1989, pp. 824–842        [ Links ]

8. Khaleghi, F and Kavehrad, M., "A Subcarrier multiplexed CDM optical local area network, theory and experiment", IEEE Trans. on Communications, 43(1), 1995, pp. 75–87        [ Links ]

9. O'Farrell, T., "New signature code sequence design techniques for CDMA systems", Electronics Letfers, 27(4), 1991, pp. 371–373        [ Links ]

10. Borjak, A., Monteiro P., Darwazeh I. and O'Reilly, "High–speed generalized distributed–amplifier–based transversal filler for optical communication systems", IEEE Transactions on Microwave Theory and Techniques, 45 (8), 1997,pp. 1453–1456        [ Links ]

11. OMMIC–Philips GaAs Foundry User Manual, ED02AH Library Libra–EESOF Simulator, Release v2.3, March 2000        [ Links ]

12. Anholt, R., Electrical and Thermal Characterization of MESFETs, HEMTs alld HBTs (Arlech House, Norwood, NY 1995)        [ Links ]

13. AI–Dabbagh,A., O'Farrell, T. and Darnell, M., "Optical signal design using reciprocal periodic sequences", Electronics Letfers, 34(20), October 1998, pp. 1962–1964        [ Links ]

14. Bockelman, D and Eisenstadt, W., "Combining differential and common–mode scattering parameters: theory and simulation", IEEE Transactions on Microwave Theory and Techniques, 43(7), 1995, pp 1530–1539.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License