SciELO - Scientific Electronic Library Online

 
vol.7 issue2Patterns of First and Second Order Systems in Virtual Instrumentation EnvironmentInheritance, Generics and Binary Methods in Java author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.7 n.2 México Oct./Dec. 2003

 

Artículo

 

An Identification Genetic Algorithm for a Family of Duffing's System

 

Un Algoritmo Genético de Identificación para la Familia del Sistema de Duffing

 

Fortunato Flores–Ando1, Carlos Aguilar–Ibáñez1, Miguel S. Suárez–Castañón1 and Francisco Cuevas de la Rosa2

 

1 Centro de Investigación en Computación del IPN Av. Juan de Dios Bátiz s/n Esq. con Manuel Othón de Mendizabal Col. San Pedro Zacatenco, A.P. 75476 07700 México, D.F., México phone: 52–5–7296000, ext–56568

2 Centro de Investigación en Óptica, León, Guanajuato

 

Abstract

This paper shows a simple way to recover the whole unknown parameters set of the Duffing's oscillator by using a genetic algorithm. The fact that the system is observable and constructible with respect to a suitable output helps in obtaining an integral parameterization of the output. Subsequently an integral parameterization of the output which depends upon the unknown parameters, and, a random estimation of the output is proposed, assuming that the set of unknown parameters are contained into a bounded set. This random estimation is chosen provided that the error between the actual output and the estimated output minimizes the errors of a quadratic function. The minimization problem and the random estimations of the output are formulated directly in terms of a genetic algorithm. A population of chromosomes is codified with the parameters of the Duffing's oscillator system. A fitness function is established to evaluate the chromosomes, in such a way that it minimizes the errors of a quadratic function. The chromosomes' population evolves till a fitness average threshold is obtained. This method is numerically possible and easy to implement in a digital computer.

Keywords: Mechanical Oscillator, Chaos, Genetic Algorithms, Reconstruction.

 

Resumen

En este artículo se presenta una forma sencilla para estimar los parámetros desconocidos del oscilador de Duffing mediante el empleo de un algoritmo genético. El hecho de que el sistema es observable y construible con respecto a una salida disponible, ayuda a obtener una parametrización integral de la salida. A partir de esta parametrización se propone un estimador aleatorio de la salida, asumiendo que los parámetros desconocidos están contenidos en un conjunto acotado. El estimador aleatorio es propuesto de tal forma que el error entre la salida real y la salida estimada minimiza una función cuadrática. Así, el problema de minimización y del estimador aleatorio son resueltos mediante un algoritmo genético. La población de cromosomas es codificada con los parámetros del oscilador de Duffing. La función de adaptabilidad es establecida para evaluar los cromosomas, de tal forma que se minimice el error de la función cuadrática. Los cromosomas de la población evolucionan hasta que un umbral promedio de adaptabilidad es alcanzado. Este método es numéricamente posible y fácil de implantar en una computadora digital.

Palabras Clave: Oscilador Mecánico, Caos, Algoritmos Genéticos, Reconstrucción.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This research was sponsored by CIC–IPN, and by the Coordinación de Posgrado e Investigación (CGPI del IPN), under Research Grant 20020247 and the Consejo Nacional de Ciencias y Tecnologia de Mexico. Also, the authors want to thank Dr. Humberto Sossa A.

 

References

1. Alligood T.D., Sauer T., and Yorke J. A., Chaos – An Introduction to Dynamical Systems. Springer–Verlag, New York., 1997.        [ Links ]

2. Bäck E.T., Fogel D.B., Michalewicz T., Evolutionary Computation 1, Institute of Physics Publishing, Bristol, 2000.        [ Links ]

3. Bender C. M., Orszag S. A., Advanced Mathematical Methods for Scientists and Engineers, Springer–Verlag New York., 1999.        [ Links ]

4. Cardón O., Herrera F., Hoffmann F. and Magdalena L., Genetic Fuzzy Systems, World Scientific, 2001.        [ Links ]

5. Chen G. and Dong X., "Identification and Control of Chaotic Cy stems: An Artificial Neuronal Network Approach", Proc. IEEE Int. Symp. Circuits Systems, ISCAS, Seattle, Washington, USA, 1995, pp. 1177–1182.        [ Links ]

6. Goldberg D., Genetic Algorithms: Search and Optimization Algorithms, Addison–Wesley Publishing, Massachusetts, 1989.        [ Links ]

7. Hadamard J., "Sur les problèms aux dérivées partielles et leur signification physique", Princeton University Bulletin 13, Princeton, N.J., 1902.        [ Links ]

8. Huijberts H, Nijmeijer H., and Willems R., "System Identification in Communication with Chaotic Systems," IEEE Transactions on Circuits and Systems –I: Fundamental Theory and Applications, vol. 47, 2000, pp. 800–808.        [ Links ]

9. Kapitaniak T., Chaos for Engineers, Springer, second, revised edition, 2000.        [ Links ]

10. Makoto I., Wah Wu Chai, Chua L. O., "Communication Systems Via Chaotic Signals From a Reconstruction Viewpoint," International Journal of Bifurcation and Chaos, vol. 7, 1997, pp. 275–286.        [ Links ]

11. Martínez G. R., De León M. J., "Nonlinear Estimators: A Differential Algebraic Approach," International Journal Applied Mathematics Letters, vol. 9, No. 4, 1996, pp. 21–25.        [ Links ]

12. Michalewicz Z., Genetic Algorithms + Data Bases = Evolution Programs, 3rd revision. Springer–Verlag, New York, 1999.        [ Links ]

13. Middleton R. H. and Goodwin G. C., Digital Estimation and Control: A Unified Approach, Prentice Hall, 1990.        [ Links ]

14. Mitchel M., An Introduction to Genetic Algorithms, MIT Press, London, 1998.        [ Links ]

15. Nayfeh A.H., and Mook ,D.T., Non–Linear Oscillations, Wiley and Sons, Chichester, 1979.        [ Links ]

16. Ott E., Grabogi C. & Yorke J.A. "Controlling chaos", Phys. Rev. Lett, vol. 64, 1990, pp. 1196–1199.        [ Links ]

17. Packard N.H., Crutchfield J.P., Farmer J. D. & Shaw R.S., "Geometry from a time series," Phys. Rev. Lett. vol 45, 1980, pp. 712–716.        [ Links ]

18. Parker T.S. and Chua L.O.., "Practical Numerical Algorithms for Chaotic Systems", Springer–Verlag, New York, 1990.        [ Links ]

19. Parlitz U., Zöller R., Holzfuss J. and Lauterborn W., "Reconstructing Physical Variables and Parameters From Dynamical Systems," International Journal of Bifurcation and Chaos, vol. 4, 1994, pp. 1715–1719.        [ Links ]

20. Poznyak A. S., Yu W., Ramírez H. S. and Sánchez E. N., "Robust identification by dynamic neural networks using sliding mode learning ", App. Math. Comput. Sci., vol 8, 1998, pp. 101–110.        [ Links ]

21. Poznyak A. S., Yu W., and Sanchez E. N., "Identification and control of unknown chaotic systems via dynamic neural networks", IEEE Trans. Circuit Syst.–I: Fundamental Theory and Applications, vol. 46, no. 12, 1999, pp. 1491–1495.        [ Links ]

22. Sauer T., Yorke J. & Casdagli M., "Embedology", J. Stat. Phys. 65, 1991, pp. 579–616.        [ Links ]

23. Sira–Ramirez H. "On the Generalized PI control of some nonlinear mechanical systems", Proceedings of the American Control Conference, Anchorage, pp. 839–844, 2002.        [ Links ]

24. Takens F., "Detecting strange attractors in turbulence," in Dynamical Systems and Turbulence, eds. Rand, D.A. & Young, L.–S. (Springer–Verlag, Berlin), 1981, pp. 366–381.        [ Links ]

25. Yeap T. H. and Ahmed, N. U. "Feedback control of chaotic systems", Dynamic Contr., vol. 7, 1994, pp. 143–154.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License