SciELO - Scientific Electronic Library Online

 
vol.52 issue2Nutrient concentration of purslane (Portulaca oleracea L.) in response to NPK fertilizationImage analysis, quality and maturation of jiló (Solanum gilo) seeds author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Agrociencia

On-line version ISSN 2521-9766Print version ISSN 1405-3195

Agrociencia vol.52 n.2 Texcoco Feb./Mar. 2018

 

Crop science

Date of transplant, boron, potassium and pruning effect on the hydroponic Physalis peruviana L. fruit production in greenhouse

Juan Elias Sabino-López1 

Manuel Sandoval-Villa1  * 

Gabriel Alcántar-González1 

Carlos Ortiz-Solorio1 

Mateo Vargas-Hernández2 

María T. B. Colinas-León2 

1Colegio de Postgraduados Campus Montecillo. C.P. 56230. Montecillo, Estado de México, México.

2Universidad Autónoma Chapingo. Chapingo, Estado de México. 56230.


Abstract

Physalis peruviana L. is a native shrub to the Andes area, with commercial potential in Mexican markets. Its cultivation depends on the climate, its production system and the technology used to increase its productivity. The objective of this study was to evaluate the effect of transplant date (TD), application of foliar boron (B) and potassium (K) in the nutrient solution, and pruning, during hydroponic fruits production in greenhouse. We carried out the study at the Colegio de Postgraduados, with plants of the “Colombia” variety. The experimental design consisted on divided plots: the large plot was the transplant date, June, July and August 2013; the small plot was the combination of B (0, 1, 3 mg L-1), K (3.5 and 7 meq L-1) and pruning (maintaining three stems and no pruning). The evaluated variables were fruits fresh weight with calyx (FWC) and without calyx (FWWC), fruit number (FN), fruit average weight (FAW) and number of cracked fruits (CF) during a two-month harvest period. The early transplants (June and July) with high B doses showed the highest fruit yield. However, during the late transplant (August) the plants without B foliar supply achieved the highest yield. B decreased the number of CF in early transplant. The supply of 7 meq L-1 of K reduced the number of FWC and FWWC in the first two dates, and 3.5 meq L-1 of K decreased the number of CF at the second date. Pruning did not change FAW, but reduced the yield on the second transplant date and decreased the number of CF by 50%.

Key words: Physalis peruviana; uchuva; yield in response to fertilization; fruit cracking

Resumen

Physalis peruviana L., es un arbusto nativo de los Andes con potencial comercial en el mercado mexicano. Su cultivo en México y el mundo depende del clima, el sistema de producción y la tecnología utilizada para incrementar su productividad. El objetivo de este estudio fue evaluar el efecto de la fecha de trasplante (FT), la aplicación de boro foliar (B) y potasio (K) en la solución nutritiva, y poda, en la producción de frutos en hidroponía e invernadero. El experimento se realizó en el Colegio de Postgraduados, con plantas de la variedad Colombia. El diseño experimental fue de parcelas divididas: la parcela grande fue la fecha de trasplante, junio, julio y agosto de 2013; la parcela chica fue la combinación B (0, 1, 3 mg L-1), K (3.5 y 7 meq L-1) y poda (poda a 3 tallos y sin poda). Las variables evaluadas fueron el peso fresco de frutos con (PFC) y sin cáliz (PFSC), el número (NF), el peso promedio (PPF) y el número de frutos agrietados (FA), durante dos meses de cosecha. Los trasplantes tempranos (junio y julio) y con dosis alta de B presentaron el mayor rendimiento de fruto. Sin embargo, en el trasplante tardío (agosto) las plantas sin suministro foliar de B lograron el mayor rendimiento. El B disminuyó el número de frutos agrietados en plantas del trasplante temprano. El suministro de 7 meq L-1 de K redujo el número de frutos con y sin cáliz en las dos primeras fechas, y 3.5 meq L-1 de K disminuyó el número de frutos agrietados en la segunda fecha. La poda no cambió el peso medio de los frutos, pero redujo el rendimiento en la segunda fecha de trasplante y disminuyó 50 % el número de frutos agrietados.

Palabras clave: Physalis peruviana; uchuva; rendimiento en respuesta a la fertilización; agrietamiento del fruto

Introduction

Physalis peruviana L., commonly called “uchuva”, is an indeterminate growth plant (Fischer et al., 2011). Originally, from Peru and Chile, its fruits are consumed fresh and industrially used for beverages manufacture, yogurts, and jams (Ramadan, 2011). These have increased its demand in specialized markets, projecting a favorable future as a commercial crop (Singh et al., 2012). For this reason, it is now introduced in other geographical areas with diverse climates (Morton, 2004). Its success, adaptation, and production depend on the used genotype (Criollo et al., 2014), climatic conditions, the production system and of the technology used in this crop (Panayotov and Popova, 2014a). For these reasons it is important to consider that the agronomic practices can improve some productive aspects of P. peruviana L. (Muniz et al., 2014), like conduction systems or tutoring (Muniz et al., 2011), pruning (Fischer et al., 2011; Criollo et al., 2014) and integrated nutrient management strategies that optimize the crop yield (Sandhu and Gill, 2011). Such management is mainly on potassium (K) whose demand is high in this crop (Torres et al., 2004) due the osmotic regulation processes (Miranda et al., 2010), and boron (B), important for carbohydrates translocation, and whose deficiency decreases the fruits size and weight and affects plant architecture (Martínez et al., 2008 and 2009). Among the strategies to increase P. peruviana production, the environment can be modified by the planting season (Lima et al., 2010) and productivity is the main indicator to evaluate the effects of agrotechnological practices (Panayotov and Popova, 2014b).

Therefore, the objective of this research was to evaluate the effect of the transplant date, K and B supply, and pruning on the fruit production and yield of P. peruviana L., in greenhouse hydroponic systems. We hypothesized that the date of transplant, pruning, K and B supply affect the yield and quality of uchuva fruits.

Materials and Methods

The study was carried out at the Colegio de Postgraduados, Campus Montecillo, Estado de Mexico, located at 19º 29' 05" N and 98º 54' 09" W, 2,242 m altitude, at a 720 μm plastic zenithal greenhouse, with 85 % transmittance and 15 % reflectance, average monthly temperature of 21.6 °C and greenhouse relative humidity of 72.9 %. Records were obtained with a datalogger (Figure 1; Sabino-López et al., 2016).

Figure 1 Maximum and minimum greenhouse daily air temperature (°C) with the cultivation of Physalis peruviana L. during the 2013 growing season. 

The nurseries were established on April 12, May 12 and June 12, 2013, in 200-well unicel trays filled with peat, in which seeds of P. peruviana variety Colombia were placed and covered with the same substrate. Plant emergency occurred 15 d after sowing (das) on all the sowing dates. The seedling transplant occurred at 30 das in each case: June 18, July 18 and August 18, 2013. In each 9 L capacity black polyethylene bag a plant was placed and filled with red tezontle, with particle diameters of less than 1 cm. Planting density was of five plants m-2. Four 15 min per day irrigations were carried out with 4 L h-1 drippers with 50 % concentration (Gastelum et al., 2013) Steiner nutrient solution (1984) 3.

The factors studied were transplant date (June 18, July or August), K concentration in the nutritious solution (3.5 or 7 meq L-1), B concentration in the sprinkled foliage solution (0, 1 or 3 mg L-1) and pruning level (three stems or no pruning), K supplied by the nutrient solution. The foliar morning spray with B adjusted to pH 5 solution started three weeks after each transplant, and at a two-week interval. Pruning was performed after the first month from transplant to the date, leaving only three main branches that gave rise to secondary branches.

The experimental design was on divided plots: large plots were the sowing dates and small plots a factorial combination of B, K and pruning levels. The large plots arranged as a randomized complete block design with three replications and a pot (plant) as the experimental unit. The harvests occurred on October 27, November 16 and December 18, 2013, according to their chronological sowing dates. The evaluated variables were: fresh fruit biomass with calyx (FWC) and without calyx (FWWC), number of fruits (NF), average fruit weight (AFW) and number of cracked fruits (CF), for two harvest months, on each transplant date.

With the data, a goodness-of-fit test was first performed to determine the best statistical strategy for the analysis, then an ANOVA and a means comparison with the Fischer test (p ≤ 0.05) were performed using the SAS software version 9.4 (SAS Institute, 2009).

Results and Discussion

Effect of transplant date on the Physalis peruviana L. production

The variables of yield showed statistical differences (p≤0.05) due to the effect of the transplant date (Table 1). The yield was lower than 1000 g per plant in the early transplant. The second transplant date exceeded the yield of the first; however, fruit production decreased almost by 50 % in the last sampling date. The highest fruits number was on the second transplant date, although the largest amount of CF was also present on the second date.

Table 1 Transplant date effect on Physalis peruviana L. on fruit yield. 

Fecha de trasplante PFC (g planta-1) PFSC (g planta-1) Número de frutos por planta PPF (g) Frutos agrietados
Junio 18 992.1 b 865.0 b 245 a 3.6 c 11 b
Julio 18 1052.7 a 935.7 a 229 a 4.1 b 23 a
Agosto 18 609.0 c 554.0 c 120 b 4.6 a 7 c
DMS 52.0 68.0 29 0.5 3

Values with a different letter in a column are statistically significant (DMS, Fisher, p ≤ 0.05). PFC: weight of fruits with calyx; PFSC: fruit weight without calyx; PPF: average fruit weight.

The lowest yield was obtained on the third transplant date, and it was attributed to temperature decrease during the crop development (Figure 1), given that the base temperature was between 13 and 16 °C, and lower temperatures, close to 0 °C or lower burn the plant (Fischer et al., 2014). However, Salazar et al. (2008) found that the physiological base temperature for the crop (insertion of new knots in the stem) is 6.29 °C. Despite this temperature decrease, on that date, the reached highest AFW and the least amount of CF was presented, which agrees with that reported by Fischer and Melgarejo (2014) since the maximum temperature to obtain optimum fruit production is less than 30 °C, although acceptable results are obtained at 35 °C. These results relate to environmental variation during crop development (Ojeda et al., 2012), affected by temperature, crop efficiency to use radiation, which increases or decreases due to pruning, since this crop is classified as short-day (Hernández and Soto, 2012a; Soto and Hernández, 2012), and they influence production, especially in greenhouse crops (Conti et al., 2015), which modifies yield and biomass production (Hernández and Soto, 2012b). Production in P. peruviana is conditioned by minimum temperature (Fischer and Melgarejo, 2014), which if lower than 6.29 °C (base temperature), photosynthates flow to the growing tissues such as fruit and seeds stops and, consequently, production may decrease (Muniz et al., 2011), which occurred as of October 13 (Figure 1).

The CF production in P. peruviana is attributed to changes in the moisture regime in the soil and the relative humidity of the atmosphere (optimum ranges from 70 to 80 %; Fischer and Miranda, 2012). During our research, relative humidity (Figure 2) was less than optimal during the first transplant dates. Cooman et al. (2005) attributed the CF problem to genetic and nutritional factors; In our study, CF varied over the months, the highest incidence was during the first harvests and attributed to higher water content in the fruits (Gordillo et al., 2004).

Figure 2 Monthly average temperature and relative humidity within a greenhouse with Physalis peruviana L. during the 2013 production cycle. 

Boron (B) foliar spraying effect

Foliar spraying with 3 mg L-1 of B increased FWG and FWWC in the plants from June 18 and July 18 (Table 2), but there was no effect on the third transplant date with the B application. The highest fresh fruits biomass with a B leaf supply in the first cultivation date is due to B favoring carbohydrates flow and the synthesis of some growth regulators (Khayyat et al., 2007), as well as on nitrogen, phosphorus and potassium absorption (Meng et al., 2014), calcium, chlorine and sodium (Hamideldin and Hussein, 2014). These effects result in higher fruit yield (Patil et al., 2008) and higher seeds weight (Sivaiah et al., 2013).

Table 2 Boron leaf spraying and transplant date effect on Physalis peruviana L. fruit yield at three transplant dates.  

Fecha de trasplante Boro (mg L-1) PFC (g planta-1) PFSC (g planta-1) Número de frutos PPF (g) Frutos agrietados
Junio 18 0 932.8 c 818.6 b 232.5 b 3.5 a 19.8 a
1 981.2 b 845.6 b 256.8 a 3.3 a 6.7 b
3 1062.0 a 930.6 a 245.9 a 3.9 a 7.8 b
DMS 26.3 24.5 13.0 1.6 2.8
Julio 18 0 1040.8 b 954.8 a 230.8 a 4.2 a 20.9 b
1 1003.6 c 894.6 b 215.4 b 4.2 a 20.3 b
3 1113.4 a 957.6 a 240.4 a 4.0 a 28.7 a
DMS 26.9 25.5 12.6 1.7 3.8
Agosto 17 0 643.2 a 588.0 a 126.7 a 4.6 a 7.5 a
1 583.9 b 528.6 b 117.6 ab 4.5 a 5.3 b
3 599.9 b 528.6 b 116.3 b 4.7 a 7.6 a
DMS 20.6 19.6 9.1 1.8 2.2

Values with different letter in a column are statistically significant (DMS, Fisher, p ≤ 0.05). PFC: weight of fruits with calyx; PFSC: fruit weight without calyx; PPF: average fruit weight.

Pandey and Gupta (2013) and Azeem and Ahmad (2011) indicated that B favors floral organs formation and pollination. Contrary to expectations, the high supply of B in the plants from August 18 decreased the accumulated yield and increased the number of CF. In contrast, the lowest amount of CF in the three transplant dates was the 1 mg L-1 of B treatment. This is because the uchuva fruit cracking is caused by B and Ca deficiencies, and it is also affected by the water content of the substrate, the size, and maturation of the fruit. The cracking probability increases in the fruits near their commercial maturity, from maturity degree 4 (yellow color) to 6 (orange color) given that from grade 4 on, the fruits grow rapidly until reaching their maximum size (Gordillo et al., 2004). Other factors that cause CF are the varietal sensitivity of the genotype and high relative humidity that accentuate this physiopathy, because more water moves to areas with high osmotic potential during high relative humidity, which promote the swelling of these, tissues which have no tangential expansion (Fischer, 2005).

Effects of potassium in the Physalis peruviana L. fruits production

The 7 meq L-1 K dose decreased the FWC, FWWC, and NF in the transplanted plants in the first two dates, but the low K dose decreased the number of CF in the transplanted plants in the second date (Table 3). The accumulated fruit yield by weight, with and without calyx, and NF in the plants transplanted on August 18 was greater with 7 meq L-1 of K.

Table 3 Potassium supply in Physalis peruviana L., fruit yield at three transplant dates. 

Fecha de trasplante K (meq L-1) PFC (g planta-1) PFSC (g planta-1) Número de frutos PPF (g) Frutos agrietados
Junio 18 3.5 1016.0 a 880.1 a 249.7 a 3.5 a 12.1 a
7 968.0 b 849.7 b 240.4 a 3.6 a 10.7 a
DMS 21.4 20.0 10.6 1.3 2.0
Julio 18 3.5 1131.3 a 972.4 a 238.4 a 4.1 a 19.4 b
7 973.9 b 898.9 b 219.3 b 4.1 a 27.2 a
DMS 22.1 20.8 10.3 1.4 3.0
Agosto 17 3.5 575.4 b 523.2 b 110.1 b 4.8 a 6.6 a
7 642.5 a 584.2 a 130.3 a 4.4 a 80 a
DMS 16.8 16.0 7.4 1.5 1.7

Values with a different letter in a column are statistically significant (DMS, Fisher, p ≤ 0.05). K: potassium; PFC: weight of fruits with calyx; PFSC: fruit weight without calyx; PPF: average fruit weight.

The above indicates that a 50 % concentration of K (3.5 meq L-1) in the Steiner (1984) nutrient solution at the first two transplantation dates was adequate for the P. peruviana nutrition grown in the greenhouse (Gastelum et al., 2013). This was because K is the element that most accumulates with a high rate of specific absorption in this crop, exceeding N (Torres et al., 2004), and it is used in osmotic regulatory processes (Miranda et al., 2010). Potassium absence reduces fruit fresh and dry biomass and negatively alters the plant architecture and tissues texture of this crop (Martínez et al., 2008, Martínez et al., 2009) causing changes in the morphology and distribution of dry matter (Gerardeaux et al., 2010), decreasing root growth and increasing ethylene production (Zhi-Yong et al., 2009). Likewise, it is necessary to increase the K dose during low temperatures months with (third transplant date), to obtain higher FWC, FWWC and AFW.

The plants of July 18 with 3.5 meq L-1 of K yielded the smallest number of CF. However this response was not observed in plants sown on June 18 and August 18, despite the importance of the application of this element before the harvest to reduce cracks on uchuva fruits (Fischer et al., 2011).

Pruning effect on Physalis peruviana L. fruit production

Pruning caused a lower fruit yield on the second transplant date but produced higher fruit yield on the third transplant date, a period that coincided with lower temperatures. Contrary to what was expected, pruning did not affect the average weight of the fruits, but the number of CF decreased by 50 % only in the plants cultivated on the second transplant date (Table 4).

Table 4 Effect of pruning on Physalis peruviana L. yield. 

Fecha Poda PFC (g planta-1) PFSC (g planta-1) Número de frutos PMF (g) Frutos agrietados
Junio 18 Multitallos 993.5 a 854.8 b 234.6 a 3.5 a 11.0 a
3 tallos 990.5 a 875.1 a 255.6 b 3.7 a 11.9 a
DMS 21.4 20.0 10.7 1.3 2.1
Julio 18 Multitallos 1096.8 a 943.4 a 233.3 a 4.2 a 30.1 a
3 tallos 1008.5 b 928.0 a 224.4 a 4.1 a 16.5 b
DMS 22.0 20.8 10.3 1.4 3.2
Agosto 18 Multitallos 596.0 b 542.1 b 123.12 a 4.6 a 6.5 a
3 tallos 622.0 a 565.8 a 117.33 a 4.6 a 7.1 a
DMS 16.8 16.0 7.4 1.5 1.7

Values with different letter in a column are statistically significant (DMS, Fisher, p ≤ 0.05). FWW: weight of fruits with calyx; FWWC: fruit weight without calyx; AFW: average fruit weight.

The pruning of the plants from the second transplant date diminished the amount of CF. This contrasts with that reported by Maboko et al. (2011), who obtained an increase in the amount of CF with this practice, because the fruits tended to be larger (Maboko and Du Plooy, 2008, Maboko and Du Plooy, 20094). Pruning improves the balance between the leaf area and NF, which prevents a high pressure of assimilates and water in the fruits (at the fruit filling stage), and this decreases the percentage of cracked uchuva fruits (Torres et al., 2004). A high percentage of CF can occur in plants with three primary branches (stems), which can additionally be attributed to the genotype and to the water flows overload and photoassimilated in fruits (Criollo et al., 2014).

Conclusions

Transplant date significantly affects the yield of uchuva fruits: the early transplant generates a medium fruit yield, intermediate transplant increases yield, but a late transplant causes yield decrease.

Foliar spraying of B on plants increased the yield of fresh fruit, but only in early transplants: June and July.

Potassium in the nutrient solution increases the yield of fresh fruit in early transplants.

The pruning of uchuva plants does not affect their yield or the number of fruits or their cracking.

REFERENCES

Azeem, M., and R. Ahmad. 2011. Foliar application of some essential minerals on tomato (Lycopersicon esculentum) plant grown under two different salinity regimes. Pak. J. Bot. 43: 1513-1520. [ Links ]

Conti, S., G. Villari, F. Amico, and G. Caruso. 2015. Effects of production system and transplanting time on yield, quality and antioxidant content of organic winter squash (Cucurbita moschata Duch). Sci. Hort. 183: 136-143. [ Links ]

Cooman, A., C. Torres, y F. Fischer. 2005. Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: II. Efecto de la oferta de calcio, boro y cobre. Agron. Colomb. 23: 74-82. [ Links ]

Criollo, H., T. C. Lagos, G. Fischer, L. Mora, y L. Zamudio. 2014. Comportamiento de tres genotipos de uchuva (Physalis peruviana L.) bajo diferentes sistemas de poda. Rev. Colomb. Cienc. Hortic. 8: 34-43. [ Links ]

Fischer, G. 2005. El problema del rajado del fruto de la uchuva y su posible control. In: Fischer, G., D. Miranda, W. Piedrahíta, y J. Romero (eds). Avances en Cultivo, Poscosecha y Exportación de la Uchuva Physalis peruviana L. en Colombia. Universidad Nacional de Colombia. pp: 55-79. [ Links ]

Fischer, G., A. Herrera, and J. Almanza P. 2011. Cape gooseberry (Physalis peruviana L.). In: Yahia, E. M. (ed). Postharvest Biology and Technology of Tropical and Subtropical Fruits. Vol. 2. Acai to citrus. Woodhead Publishing, Cambridge, UK. pp: 374-396. [ Links ]

Fischer, G., y M. Melgarejo L. 2014. Ecofisiología de la uchuva (Physalis periviana L.). In: Pássaro, C. C. P. (ed). Uchuva (Physalis peruviana L.): Fruta Andina para el Mundo. pp: 29-47. [ Links ]

Fischer, G., P. J. Almanza-Merchan, and D. Miranda. 2014. Importância e cultivo do (Physalis peruviana L.) no mundo. Rev. Bras. Frutic. 36: 1-15. [ Links ]

Fischer, G., y D. Mirand. 2012. Uchuva (Physalis peruviana L.). In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Bogotá: Produmedios. pp: 851-873. [ Links ]

Gastelum O., D. A., M. Sandoval V., C. Trejo L., y R. Castro-Brindis. 2013. Fuerza iónica de la solución nutritiva y densidad de plantación sobre la producción y calidad de frutos de Physalis peruviana L. Rev. Chapingo. Serie Hortic. 19: 197-210. [ Links ]

Gerardeaux, E., L. Jordan-Meille, J. Constantin, S. Pellerin, and M. Dingkuhn. 2010. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ. Exper. Bot. 67: 451-459. [ Links ]

Gordillo O., P., G. Fischer, y R. Guerrero. 2004. Efecto del riego y de la fertilización sobre la incidencia del rajado de frutos de uchuva (Physalis peruviana L) en la zona de Silvania (Cundinamarca). Agron. Colomb. 22: 53-62. [ Links ]

Hamideldin, N., and O. S. Hussein. 2014. Response of sesame (Sesamum indicum L.) plants to foliar spray with different concentrations of boron. J. Amer. Oil Chem. Soc. 91: 1949-1953. [ Links ]

Hernández C., N., y F. Soto C. 2012a. Influencia de tres fechas de siembra sobre el crecimiento y rendimiento de especies de cereales cultivada en condiciones tropicales. Parte I. Cultivos del maíz (Zea mays L.). Cultivos Trop. 33: 44-49. [ Links ]

Hernández C., N., y F. Soto C. 2012b. Influencia de tres fechas de siembra sobre el crecimiento y la relación fuente-demanda del cultivo de maíz (Zea mays L.). Cultivos Trop. 33: 28-34. [ Links ]

Khayyat, M., E. Tafazoli, S. Eshghi, and S. Rajaee. 2007. Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm. Am-Euras. J. Agric. Environ. Sci. 2: 289-296. [ Links ]

Lima, C. S. M., M. A. Gonçalves, Z. F. P. Tomaz, A. R. Rufato, e J. C. Fachinello. 2010. Sistemas de tutoramento e épocas de transplante de Physalis. Ciência Rural 40: 2472-2479. [ Links ]

Maboko, M. M., and C. P. Du Plooy. 2008. Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon escylentum). S. Afr. J. Plant Soil 25: 178-181.BB [ Links ]

Maboko, M. M., C. P. Du Plooy, and S. Chiloane. 2011. Effect of plant population, fruit and stem pruning on yield and quality of hydroponically grown tomato. Afr. J. Agric. Res. 6: 5144-5148. [ Links ]

Martínez, F. E., J. Sarmiento, G. Fischer, y F. Jiménez. 2008. Efecto de la deficiencia de N, P, K, Ca, Mg y B en componentes de producción y calidad de la uchuva (Physalis peruviana L.). Agron. Colomb. 26: 389-398. [ Links ]

Martínez, F. E., J. Sarmiento, G. Fischer, y F. Jiménez. 2009. Síntomas de deficiencias de macronutrientes y boro en plantas de uchuva (Physalis peruviana L.). Agron. Colomb. 27: 169-178. [ Links ]

Meng, C., P. Jiang, J. Zhen, G. Zhou, and Q. Xu. 2014. Effects of soil and foliar application of boron on nutrient uptake grow and yield of red bayberry. Int. J. Fruit Sci. 14: 135-252. [ Links ]

Miranda, D., C. Ulrichs, and G. Fischer. 2010. Dry matter accumulation and foliar K, Ca and Na contents in salt-stressed Cape gooseberry (Physalis peruviana L.) plants. Agron. Colomb. 28: 165-172. [ Links ]

Morton, J. F. 2004. Crop Index. http://www.hort.purdue.edu/newcrop/morton/index.html . (Consulta: junio 2015). [ Links ]

Muniz, J., A. A. Kretzschmar, L. Rufato, T. R. Pelizza, T. Marchi, A. E. Duarte, A. P. F Lima, and F. Garanhani. 2011. Sistemas de condução para o cultivo de Physalis no planalto catarinense. Rev. Bras. Frutic. 33: 830-838. [ Links ]

Muniz, J., A. A. Kretzschmar, l. Rufato, T. R. Pelizza, A. D. R. Rufato, and T. A. D. Macedo. 2014. General aspects of Physalis cultivation. Ciência Rural 44: 964-970. [ Links ]

Ojeda, A. D., G. A. Ligarreto, and O. Martínez. 2012. Effects of environmental factors on the morphometric characteristics of cultivated lettuce (Lactuca sativa L.). Agron. Colomb. 30: 351-358. [ Links ]

Pandey, N., and B. Gupta. 2013. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J. Trace Elem. Med. Biol. 27: 58-64. [ Links ]

Panayotov, N., and A. Popova. 2014a. Investigation of the possibilities for after harvest ripening the fruits of Cape gooseberry (Physalis peruviana L.) depending on the applied agrotecnology. Turkish J. Agric. Nat. Sci. 1: 1134-1140. [ Links ]

Panayotov, N., and A. Popova. 2014b. Vegetative and productive behaviors of Cape gooseberry (Physalis peruviana L.), grown by direct sowing outside under conditions of Bulgaria. Turkish J. Agric. Nat. Sci. 1: 1141-1146. [ Links ]

Patil, B. C., R. M. Hosamani, P. S. Ajjappalavara, B. H. Naik, R. P. Smitha, and K.C. Ukkund. 2008. Effect of foliar application of micronutrients on growth and yield components of tomato (Lycopersicon esculentum Mill.). Karnataka J. Agric. Sci. 21: 428-430. [ Links ]

Ramadan, M. F. H. 2011. Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev. Int. 27: 259-273. [ Links ]

Sabino-López, J. E., M. Sandoval-Villa, G. Alcántar-González, C. Ortiz-Solorio, M. Vargas-Hernández, y T. Colinas-León. 2016. Fenología de Physalis peruviana L. cultivada con base en tiempo térmico. Rev. Mex. Ciencias Agríc. 17: 3521-3528. [ Links ]

Salazar, M. R., J. W. Jones, B. Chaves, A. Cooman, and G. Fischer. 2008. Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Rev. Bras. Frutic., Jaboticabal 30: 862-867. [ Links ]

Sandhu, S., and B. S. Gill. 2011. Effect of integrated nutrient management strategies on growth and yield of Cape gooseberry (Physalis peruviana L.). J. Hortic. Sci. 6: 29-32. [ Links ]

SAS Institute, Inc. 2009. Statistical Analysis System release 9.1 for windows. SAS Institute. Cary, NC, USA. [ Links ]

Singh, D. B., A. A. Pal, L. Shiv, N. Ahmed, and M. Anis. 2012. Growth and developmental changes of Cape gooseberry (Physalis peruviana L.) fruits. Asian J. Hortic. 7: 374-378. [ Links ]

Sivaiah, K. N., S. K. Swain, B. Raju, and S. V. Varma. 2013. Effect of micronutrients foliar application on seed yield in tomato (Lycopersicon esculentum Mill.). Inter. J. Plant Anim. Sci. 1: 070-072. [ Links ]

Soto, C. F., y C. N. Hernández. 2012. Influencia de tres fechas de siembra en el crecimiento y rendimiento de especies de cereales cultivadas en condiciones tropicales. Parte II. Cultivo de sorgo (Sorghum bicolor L. Moench var. ISIAP DORADO). Cultivos Trop. 33: 50-55. [ Links ]

Torres, A., C. A. Cooman, y G. Fischer 2004. Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: I. Efecto de la variación en el balance hídrico. Agron. Colomb. 22:140-146. [ Links ]

Zhi-Yong, Z., W. Qing-Lian, L. Zhao-Hu, D. Liu-Sheng, and T. Xiao-Li. 2009. Effects of potassium deficiency in root growth of cotton seedlings and its physiological mechanisms. Acta Agron. Sinica 35: 718-723. [ Links ]

3Steiner, A. A. 1984. The universal nutrient solution. Proc. 6th Int. Congress on Soilless Culture. ISOSC. Wageningen. The Netherlands. pp: 633-649.

4Maboko, M. M., and C. P. Du Plooy. 2009. Effect of stem pruning and fruit on yield and quality of hydroponically grown tomato. African Crop Science Conference Proceedings 9: 178-181.

Received: July 01, 2016; Accepted: June 01, 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons