SciELO - Scientific Electronic Library Online

 
vol.38 issue3Bioproducts in the growth and yield of Phaseolus vulgaris L. var. Delicia 364Agronomic response of sweet pepper (Capsicum annuum L.) to application of Bacillus subtilis and vermicompost in greenhouse author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Terra Latinoamericana

On-line version ISSN 2395-8030Print version ISSN 0187-5779

Terra Latinoam vol.38 n.3 Chapingo Jul./Sep. 2020  Epub Jan 12, 2021

https://doi.org/10.28940/terra.v38i3.715 

Special number

Growth of ornamental sunflower in pot at field level by effect of arbuscular mycorrhizal fungi

Isabel Vital-Vilchis1 
http://orcid.org/0000-0002-4932-9128

Evangelina Esmeralda Quiñones-Aguilar1 
http://orcid.org/0000-0002-7384-0532

Laura Verónica Hernández-Cuevas2 
http://orcid.org/0000-0002-0783-4775

Gabriel Rincón-Enríquez1   
http://orcid.org/0000-0001-7594-6077

1Laboratorio de Fitopatología, Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Camino Arenero 1227, El Bajío del Arenal. 45019 Zapopan, Jalisco, México.

2Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala. Carretera San Martín Texmelucan-Tlaxcala km 10.5, San Felipe Ixtacuixtla. 90120. Ixtacuixtla de Mariano Matamoros, Tlaxcala, México.


Summary:

Sunflower popularity as an ornamental plant has increased dramatically in the last decade. The arbuscular mycorrhizal fungi (AMF) increased the diameter of the floral chapter and early flowering in the gerbera; however, this effect depends on the inoculum species of AMF and the host plant. The aim of this study was to assess the effect of different AMF inoculums on plant growth of different sunflower ornamental varieties. A two factors random block experiment with six replicates in Zapopan at 2017 was established; AMF with five levels: Rhizophagus intraradices (Ri), Funneliformis mosseae (Fm), consortium Cerro del Metate (CM), Las Campesinas (LC) and without AMF; ornamental sunflower variety with four levels: belleza de otoño (BO), gigante simple amarillo (GSA), doble enana (DE) and doble gigante (DG). Seventy days after having established the experiment, growth variables and mycorrhizal colonization percentage were measured. Results showed that GSA-CM was superior in plant growth to other treatments (Tukey, P ≤ 0.05). The consortium CM of AMF stimulated GSA growth in comparison with respect to the non-inoculated by 31%. Nevertheless, the variety BO showed 60% growth decrement whenever inoculated with AMF in comparison with the control without AMF. Fm inoculum had the lowest mycorrhizal colonization percentage (28%), despite of this, it showed significant effects over ornamental sunflower varieties growth. These results suggest the wide diversity of responses, in terms of growth, depending on the variety of sunflower and the type of AMF.

Index words: floriculture; Helianthus annuus; mycorrhizas

Resumen:

La popularidad del girasol como planta ornamental se incrementó dramáticamente en la última década. Algunos estudios muestran que hongos micorrízicos arbusculares (HMA) aumentaron el diámetro del capítulo floral y un adelanto en la floración de gerbera; sin embargo, esto depende tanto de la especie de HMA, como de la planta hospedera. El objetivo de este trabajo fue evaluar el efecto de diferentes inóculos de HMA en el crecimiento de variedades ornamentales de girasol. Se estableció un experimento en Zapopan durante 2017 en bloques al azar con seis repeticiones por tratamiento con dos factores: HMA con cinco niveles: Rhizophagus intraradices (Ri), Funneliformis mosseae (Fm), consorcios: Cerro del Metate (CM) y Las Campesinas (LC) y sin HMA; variedad de girasol ornamental con cuatro niveles: belleza de otoño (BO), gigante simple amarillo (GSA), doble enana (DE) y doble gigante (DG). Setenta días después de establecido el experimento se evaluaron variables de crecimiento y colonización micorrízica. Los resultados mostraron que GSA-CM fue superior en variables de crecimiento respecto a los otros tratamientos (Tukey, P ≤ 0.05). El consorcio CM estimuló el crecimiento de GSA con respecto al girasol no inoculado en un 31%. Sin embargo, la variedad BO mostró 60% de decremento del crecimiento con todos los inóculos de HMA respecto al control sin HMA. Con el inóculo Fm, se tuvo la menor colonización micorrízica (28%); sin embargo, mostró efectos significativos en el crecimiento del girasol. Estos resultados sugieren una diversidad de respuesta al crecimiento dependiendo de la variedad de girasol y el tipo de HMA.

Palabras clave: floricultura; Helianthus annuus; micorrizas

Introduction

Arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota are obliged symbionts that establish a mutualistic type relationship with more than 80% of the terrestrial plants, among which the sunflower (Helianthus annuus) is found. The AMF, in exchange of receiving photosynthates, perform a key role in plant growth, as well as in resistance and tolerance to biotic and abiotic stresses. Plants are protected against pathogens, salinity, heavy metals, and drought, among others, by the systemic change caused on them by the AMF, which also participate in soil stability (Khan, 2006; Lingua et al., 2012; Souza, 2015). In addition, mycohrrizae have shown to be an important factor that contributes to the maintenance of plant biodiversity in an ecosystem (Van der Heijden et al., 1998) since plants depend on mycorrhizae to survive (Wilson and Hartnett, 1997). Plant growth stimulation by the effects of mycorrhization has been proven in different plant species of agricultural importance, for example, tomato (Ley-Rivas et al., 2015), papaya (Quiñones-Aguilar et al., 2012), coffee (Parra et al., 1990), maize (Bi et al., 2018), bean (Liriano et al., 2012) and the tree Heliocarpus popayanensis used for reforestation (Zangaro et al., 2015).

The sunflower (H. annuus) belongs to the family Asteraceae, and its biodiversity is native to Mexico. It has been traditionally used as an oleaginous plant, and in the last decade its popularity as ornamental cultivation has increased significantly. The attractive appearance of the sunflower floral chapter has stimulated its use as garden, pot, and cut flower (Bye et al., 2009; Yañez et al., 2004). Different studies have shown that the size of some ornamental plants, such as anthurium (Anthurium andreanum) (Corbera et al., 2008) and gerbera (Gerbera jamesonni cv. Bolus) increased 27% the diameter of the floral chapter by effect of mycorrhizae, and flowering started 50 days earlier (Soroa et al., 2003). These benefits make AMF an important tool for flower cultivation. Mycorrhized sunflowers with Funneliformis mosseae have shown greater biomass accumulation, as well as nitrogen and seed yield in drought conditions (Gholamhoseini, 2013). The AMF influence positively phosphorus absorption when it is not accessible in soil. In fact, the use of AMF is recommended to reduce inorganic phosphorus fertilization in plants (Chandrashekara et al., 1995; Soleimanzadeh, 2010; Quiñones-Aguilar et al., 2012). Some of the AMF species that colonize sunflower are Funneliformes mosseae (Hassan et al., 2013) and different species of Glomus: G.intraradices, G. albidum, G. diaphanum and G. claroideum (Davies et al., 2001; Barcos et al., 2015), and Rhizoglomus irregularis (Vangelisti et al., 2018). Some AMF species have shown greater beneficial effects than others (Gholamhoseini, 2013) since AMF may show different compatibility degrees with their host (Van der Heijden et al., 1998). They also benefit themselves in different forms according to the host plant and respond differently depending on the species used (Ley-Rivas et al., 2015). It is not surprising that plant identity and abundance is correlated with composition and diversity of soil mycorrhizal fungi (Martínez-García et al., 2015). Additionally, in some cases the use of mycorrhizal consortium has been observed to favor plant growth more than the use of inoculants with monospecies (Mehrotra and Baijal, 1995). In this respect, Trejo et al. (2011) observed significantly greater growth in coffee plants with a consortium that contained a greater number of AMF species than with another one of lesser amount. Under this context, the objective of this study was to assess the effect of different inoculants of arbuscular mycorrhizal fungi (consortia and monospecies) in plant growth of ornamental sunflower varieties cultivated in pots at open air.

Materials and Methods

Varieties of ornamental sunflower and inoculants of arbuscular mycorrhizal fungi

Four varieties of ornamental sunflower were used: belleza de otoño (BO), doble gigante (DG), doble enana (DE), and girasol simple amarillo (GSA) of the company Vita( (Morelos, MX). The seeds were washed with sodium hypochlorite (5%) for five min and subsequently rinsed thrice with distilled water. Then, seeds were placed in absorbent paper moistened with tap water following the technique “tacos de germinación” (germination wraps) (Moreno, 1996). These wraps were maintained in darkness conditions at 25 (C for five days. Subsequently, seedlings were transplanted to pots, selecting those of approximately 6 cm in height. The AMF inoculants used were: Rhizophagus intraradices (Ri), Funneliformis mosseae (Fm), and native consortia of agave (Agave cupreata) rhizosphere: Cerro del Metate (CM) and Las Campesinas (LC) described by Trinidad et al. (2017). These inoculants were previously propagated for eight months under greenhouse conditions and in pot traps using sorghum (Sorghum bicolor ( Sorghum sudanese Sweet Chow; Western Seed Co.; Kitale, KE) as host. Sunflower varieties were inoculated with 100 AMF spores at the moment of transplanting and placed directly on the root. The substrate used in the experiment was 50:50 (v/v) of Peat Moss (Sunshine Mix( No. 3, Agawam, USA) and a soil:sand:agrolite (60:25:5, v/v/v) mixture, which was sterilized in autoclave (120 (C, 1.05 kg m-2, 6 h). Black 5 kg polyethylene bags were used as pots for one sunflower plant, placing 3 kg of sterilized mixture in each bag.

Environmental conditions during the experiment

The experiment was performed in field conditions in the facilities of Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) at Zapopan located at 20° 42’ 5.97” N, 03° 28’ 25.83” W in the rainy season (14 June to 23 August) of 2017. The average temperature was 20.3 (C with an average maximum of 31 (C and minimum of 15.5 (C. During the experiment a heavy accumulated precipitation of 279.1 mm was recorded at an average wind speed of 2.1 km h-1 (IAM-CUCEI, 2017).

Evaluation assay of arbuscular mycorrhizal fungi in ornamental sunflower growth

A bifactorial 5 × 4 randomized complete block design was used with six replicates per treatment. Blocking eliminated the solar radiation factor. The experimental unit was a pot with a sunflower plant. The five levels of the first AMF factor were (1) Rhizophagus intraradices (Ri); (2) Funneliformis mosseae (Fm); (3) Cerro del Metate (CM); (4) Las Campesinas (LC); (5) without-AMF (control). The four levels of the second ornamental sunflower factor were (1) belleza de otoño (BO); (2) gigante simple amarillo (GSA); (3) doble enana (DE); (4) doble gigante (DG). At the end of the experiment (70 days after transplant), plant height, stem diameter, leaf number, floral chapter diameter, dry root weight, stem with leaves, floral chapter and mycorrhizal colonization were quantified in each experimental unit. For mycorrhizal colonization, the clearing and staining technique developed by Phillips and Hayman (1970) was followed; for quantification, the method proposed by Hernández-Cuevas et al. (2012) was used, which consisted of taking 90 stained roots of 2 cm in length; 30 roots were placed per slide in a compound microscope (40X) to observe the mycorrhizal symbiosis structures; the mycorrhizal colonization percentage (MCP) was estimated by the following formula: MCP = [(Number of colonized fields/Number of total fields observed) ( (100)]. The data obtained in the assessment of the different response variables were subjected to an analysis of variance (ANOVA) and a Tukeys’s multiple comparison of means tests (P ≤ 0.05). Dry weight data were transformed with a natural logarithm; for dry weight and mycorrhizal colonization, Pearson’s correlation analysis was carried out. These statistical analyses were performed with the Statgraphics Centurion (StatPoint Inc., 2005) program.

Results and Discussion

Sunflower growth in association with arbuscular mycorrhizal fungi depends on plant variety

In general, 70 days after the experiment was established, the plants of the variety gigante simple amarillo (GSA), both inoculated and without-AMF inoculation showed greater growth compared with the other varieties. The treatment sunflower-GSA inoculated with Cerro del Metate (CM) showed significantly greater plant growth (Tukey’s, P ≤ 0.05) when compared with the variety GSA without-AMF. The inoculant CM promoted plant growth of the variety GSA in the majority of the response variables, except for height and leaf number (Tukey’s, P ≤ 0.05) (Tables 1 and 2).

Table 1: Growth of ornamental sunflower varieties inoculated with arbuscular mycorrhizal fungi (AMF) at 70 days after transplant (rainy season 2017, Zapopan Jalisco). 

Treatment

Leaf number

Stem diameter

Plat height

DFloral chapter diameter

Mycorrhizal olonization

GSA-Ri

13.0

abc

8.48

bcd

80.40

cd

7.3

cdef

63.0

de

GSA-Fm

14.8

abc

13.98

f

86.80

d

8.9

ef

20.1

abc

GSA-CM

13.7

abc

12.41

ef

91.00

d

9.4

f

72.6

e

GSA-LC

14.5

abc

8.4

bcd

78.1

bcd

5.8

abcd

49.7

bcde

GSA

17.5

c

10.0

d

87.2

d

7.3

def

23.8

abcd

DG-Ri

10.3

ab

9.0

cd

54.9

ab

5.7

abcd

46.7

abcde

DG-Fm

12.5

abc

8.6

bcd

48.6

a

5.4

abcd

45.3

abcde

DG-CM

12.3

abc

8.0

abcd

57.3

ab

6.6

bcde

73.4

e

DG-LC

11.2

abc

7.6

abc

48.2

a

4.7

abc

51.7

abcde

DG

12.5

abc

7.9

abcd

53.5

a

5.0

abcd

17.0

ab

DE-Ri

12.3

abc

7.7

abc

50.6

a

5.4

abcd

37.7

abcde

DE-Fm

13.2

abc

10.1

de

60.3

abc

7.6

def

22.5

abcd

DE-CM

13.2

abc

8.4

bcd

56.9

ab

5.3

abcd

57.0

cde

DE-LC

11.0

abc

8.4

bcd

60.4

abc

6.6

bcdef

63.0

de

DE

9.8

a

8.7

bcd

59.8

abc

6.3

bcde

20.6

abcd

BO-Ri

13.7

abc

7.4

abc

75.2

bcd

4.4

ab

37.9

abcde

BO-Fm

11.0

abc

6.5

ab

62.4

abcd

4.3

ab

25.7

abcd

BO-CM

10.3

ab

6.2

ab

57.5

abc

3.1

a

33.3

abcde

BO-LC

12.5

abc

6.1

a

62.9

abc

4.1

ab

37.4

abcde

BO

16.5

bc

8.0

abcd

79.1

bcd

4.7

abcd

8.7

a

Averages with different letters in the same column are statistically different (Tukey’s, P ≤ 0.05). Sunflower varieties: GSA = gigante doble amarilla; DE = doble enana; DG = doble gigante; BO = belleza de otoño. AMF inoculants: Ri = Rhizophagus intraradices; Fm = Funneliformis mosseae; consortia Cerro del Metate (CM) and Las Campesinas (LC).

Table 2: Dry biomass accumulation of ornamental sunflower varieties inoculated with arbuscular mycorrhizal fungi (AMF) at 70 days after transplant (rainy season 2017, Zapopan Jalisco). 

Treatment

Dry weight

Root

Stem with leaves

Floral chapter

Total

Variety-AMF

------------------ g ------------------

GSA-Ri

6.1

cdef

9.5

cdef

7.0

de

23.0

def

GSA-Fm

8.8

def

16.7

ef

9.8

e

36.2

ef

GSA-CM

13.2

f

18.5

f

10.3

e

43.1

f

GSA-LC

4.5

bcdef

10.3

cdef

3.5

bcde

16.8

bcdef

GSA

9.7

ef

14.9

ef

6.7

de

32.8

ef

DG-Ri

2.2

abcde

6.0

abcd

4.6

bcde

12.8

abcde

DG-Fm

2.2

abcd

4.4

abc

3.2

bcde

11.1

abcd

DG-CM

3.1

abcde

5.4

abcd

4.0

bcde

12.7

abcd

DG-LC

1.2

ab

3.6

a

1.7

b

6.5

ab

DG

2.9

abcde

5.1

abcd

3.6

bcde

11.2

abcd

DE-Ri

1.9

abc

4.8

abc

2.4

bcd

9.2

abcd

DE-Fm

3.3

bcdef

8.5

bcdef

5.3

cde

17.3

cdef

DE-CM

3.0

abcde

5.0

abcd

3.7

bcde

12.2

abcd

DE-LC

4.54

bcdef

7.5

abcde

5.6

cde

18.5

cdef

DE

2.7

abcde

6.4

abcd

4.0

bcde

13.1

abcde

BO-Ri

2.3

abcd

7.9

bcde

2.1

bc

11.2

abcd

BO-Fm

2.5

abcde

4.3

ab

2.5

bcd

9. 6

abcd

BO-CM

0.8

a

5.0

abcd

0.4

a

5.5

a

BO-LC

1.4

ab

5.6

abcd

1.5

ab

7.7

abc

BO

3.7

bcdef

11.2

def

1.8

bc

15.4

abcde

Averages with different letters in the same column are statistically different (Tukey’s, P ≤ 0.05). Sunflower varieties: GSA = gigante doble amarilla; DE = doble enana; DG = doble gigante; BO = belleza de otoño. AMF inoculants: Ri = Rhizophagus intraradices; Fm = Funneliformis mosseae; consortia Cerro del Metate (CM) and Las Campesinas (LC).

The ornamental sunflower varieties showed a wide plasticity response to inoculation with native mexican arbuscular mycorrhizal fungi

For the ornamental sunflower variety factor, plant growth, both those inoculated and without-AMF, the majority of the response variables followed this order: GSA > DE > DG > BO. This tendency suggested a differential response due to the intrinsic genotype of each variety; under this idea, the varieties GSA and BO showed the greatest and least plant growth, respectively (Table 3). With respect to the response of the sunflower varieties to mycorrhizal colonization, a tendency GSA = DG = DE > BO was observed, which showed that all the varieties were capable of establishing the mycorrhizal association; however, the degree by which they were colonized was variable (Table 3). For the AMF inoculant factor, observing the growth variables with significant differences (Tukey’s, P ≤ 0.05) a tendency of without-AMF = Fm > CM = Ri > LC could be established, which suggested that AMF have negative effects in ornamental sunflower plant growth. Under this context, the LC consortium was the inoculant with the greatest negative effect, followed by CM and Ri; whereas Fm did not show any effect on growth when compared with the control group without-AMF sunflower plants (Table 3) while for mycorrhizal colonization the following order was observed Ri = CM = LC > Fm = without-AMF.

Table 3: Effect of arbuscular mycorrhizal inoculants and ornamental sunflower varieties on plant growth at 70 days after transplant (rainy season; Zapopan, Jalisco). 

Study factor

Dry weight

Leaf number

Stem diameter

Plant height

Chapter diameter

Mycorrhizal colonization

Root

Stem & leaves

Floral chapter

Total

-------- g -------

mm

- - - - - cm - - - - -

%

Belleza de otoño

1.9a

6.5b

1.6a

9a

12.3a

7.1a

66.7b

4.1a

27.7a

Doble enana

3.0a

6.2b

4.1b

13.7b

12a

8.5b

56.2a

6.0b

42.7b

Doble gigante

2.3a

4.5a

3.2b

11ab

11.4a

8.1b

52.7a

5.5b

46.4b

Gigante simple amarillo

7.8b

13.2c

6.7c

28.1c

14.9b

10.6c

85.8c

7.3b

46.8b

R. intraradices

3.0ab

6.7a

3.6ab

13.9ab

12.3a

8.3a

64.2a

5.6ab

46.2b

F. mosseae

3.6ab

6.9a

4.2b

16b

12.5a

9.0a

62.9a

6.1b

28.4a

CM Consortium

3.1ab

6.9a

3.3ab

12.8ab

12.9a

8.6a

63.2a

5.5ab

59.1b

LC Consortium

2.3a

6.4a

2.6a

11.1a

12.3a

8a

61.1a

5.1a

50.4b

Without-AMF

4.3b

8.5a

3.7ab

16.8b

13.3a

8.6a

69.9a

5.7ab

17.5a

Interaction

F

2.09

4.38

2.79

3.4

0.84

2.51

2.3

4.32

1.72

P

0.035

0.0002

0.006

0.0012

0.6101

0.015

0.0219

0.0002

0.0812

Averages with different letters in the same column are statistically different (Tukey’s, P ≤ 0.05) for each study factor. Value of F associated to the null hypothesis (Ho): No interaction existed between AMF and the sunflower variety. Probability observed from statistical F.

These results show that the Fm inoculant colonized ornamental sunflower variety little and did not cause negative effects in their growth (Table 3), which could be due to the existing interaction among the sunflower varieties and AMF inoculants in the different response variables assessed except for leaf number and mycorrhizal colonization (P ≤ 0.05). This result suggested that the sunflower varieties responded differently to the different AMF inoculants (Table 3, Figure 1), showing a wide plasticity response of the ornamental sunflower varieties to mycorrhization. These tendencies are clearly observed in the data shown in Table 4, where the significantly (Tukey’s, P ≤ 0.05) positive effects of the different AMF inoculants can be appreciated in each one of the sunflower varieties; for example, an increase of 31% by the CM inoculant observed in the GSA variety with respect to the group without-AMF inoculated treatment, and even negative effects since in the BO variety all the AMF inoculants showed a decrease in growth (Figure 1, Tables 4 and 5).

Sunflower varieties: GSA = gigante doble amarilla; DE = doble enana; DG = doble gigante; BO = belleza de otoño. Inoculants of AMF: Ri = Rhizophagus intraradices; Fm = Funneliformis mosseae; consortia Cerro del Metate (CM) and Las Campesinas (LC).

Figure 1: Interactions among inoculant factors of arbuscular mycorrhizal fungi (AMF) and ornamental sunflower varieties in pot at open sky at 70 days after transplant (rainy season 2017; Zapopan, Jalisco).  

Table 4: Behavior of dry weight in each ornamental variety of sunflower according to the inoculum of the arbuscular mycorrhizal fungus (AMF) inoculated at 70 days after transplantation in an open pot (rainy season, 2017; Zapopan, Jalisco). 

AMF

Total dry weigh of ornamental sunflower varieties

Gigante simple amarilla

Doble gigante

Belleza de otoño

Doble enana

- - - - - - - - - - - - - - - - - - - - - - - g - - - - - - - - - - - - - - - - - - - - - - -

R. intradices

23.5 (-28)

ab

13.3 (+18)

b

11.2 (-27)

a

9.2 (-36)

a

F. mosseae

37.0 (+12)

ab

11.1 (+1)

ab

9.6 (-37)

a

17.3 (+19)

a

CM Consortium

43.2 (+31)

b

12.7 (+13)

b

9.5 (-38)

a

12.2 (-15)

a

LC Consortium

17.2 (-48)

a

6.5 (-42)

a

7.7 (-50)

a

18.1 (+25)

a

Without-AMF

32.8

ab

11.2

b

15.4

a

14.42

a

Averages with different letters in the same column are statistically different (Tukey’s, P ≤ 0.05). The calculus of increase (+) or decrease (-) of the total dry weight with respect to the control without-AMF treatment is shown in parenthesis.

Table 5: Pearson’s correlation coefficient (r) between the total dry weight of each sunflower variety and its mycorrhizal colonization. 

Gigante simple amarilla

Doble gigante

Belleza de otoño

Doble enana

Correlation

-0.0583

0.1246

-0.4078

0.0889

Value-P

0.7866

0.5711

0.0665

0.6866

P-Value associated to the null hypothesis (Ho): r = 0; Ho is rejected in bold to a level of significance of 0.07.

Mycorrhizal colonization and plant growth are related in the belleza de otoño (BO) variety

The correlation analysis showed an r value of -0.4078 between dry weight and mycorrhizal colonization for the BO variety, which revealed that while mycorrhizal colonization percentage increased, plant growth was lower in the BO sunflower variety. This effect was not observed in the rest of the sunflower varieties, for which the (r) correlation values were statistically zero (P > 0.05); this result suggested that no relationship existed between mycorrhizal colonization and plant dry weight (Table 5).

Discussion

The sunflower showed a great plasticity in plant growth by the effect of mycorrhizal colonization; in this study GSA was stimulated by CM and inhibited by LC while no significant effect was found with any AMF for the DE variety (Tukey’s, P ≤ 0.05); in contrast, BO growth was inhibted by all AMF inoculants whereas for DG, the effect in growth was negative with LC. The high response variability (from parasitic to mutualistic) of different plants in the presence of mycorrhizal fungus strains is a phenomenon reported by Klironomos (2003) where magnitude and direction were determined by the combination plant-fungus. Additionally, no variety showed its best effect with the same mycorrhizal inoculant. This study has shown that the plasticity response to AMF is not only due to the differences among species but also to the varieties of the same plant species. The responses the sunflower showed to mycorrhizal colonization, in terms of growth, depended on the balance between the organic carbon donated to the fungus and phosphorus absorption that it provided to the plant (Smith and Smith, 2012). A positive growth effect is attributed to the adequate phosphorus absorption of the plant through the AMF, and a negative response is attributed to this same fault of the fungus to provide phosphorus at the same time it consumes too much carbon (Smith and Smith, 2012).

A mycorrhizal fungus may be considered as a plant parasite when the net cost of symbiosis exceeds the net benefit. Parasitism may be induced by the plant development by the ambience or inclusive when determined by the plant species genotype (Johnson et al., 1997). For example, the lack of light or phosphorus fertilization is considered a condition that favors parasitism by the fungi that form mycorrhizae (Friede et al., 2016) and cause mycorrhized plants to grow less than those non-mycorrhized (Daft and El-Giahmi, 1978; Ballhorn et al., 2016). Nevertheless, Friede et al. (2016) observed that Hieracium pilosella (obliged mycotrophic) formed mutualistic type mycorrhizal associations consistent under edaphic and soil conditions, both promoters of mutualism and parasitism, while Corynephorus canescens (less mycotrophic) showed a pronounced parasitism association in all the cases. These results demonstrated that the host genotype had an important function in mycorrhizal symbiosis. In this case, Belleza de Otoño was consistently affected by mycorrhization (independently of the inoculum type), which suggested it was a genotype effect.

Conclusions

The arbuscular mycorrhizal fungi (AMF) had a differential effect on plant growth according to the sunflower variety host while the varieties responded according to the AMF species or consortium used, which translates to the fact that each AMF strain may establish a mutualistic, parasitic type relationship or may not show growth effects on ornamental sunflower varieties. Belleza de otoño showed a constant parasitism relationship (with respect to growth) with all the AMF inoculants, while gigante simple amarillo (GSA) had a mutualism type relationship with Cerro del Metate (CM); the doble enana (DE) variety did not show mycorrhization effects, and finally the doble gigante (DG) variety had mutualism and parasitism type relationships.

Acknowledgments

This research was supported by the projects of Phytopathology line of research of CIATEJ and by the CONACYT Project 293362 through the Laboratorio Nacional PLANTECC. IVV is grateful to CONACYT for the scholarship for Master’s studies. E. E. Quiñones-Aguilar participated as co-director of this Master’s thesis research study; D. Fischer provided translation and edition services.

REFERENCES

Ballhorn, D. J., M. Schadler, J. D. Elias, J. Millar, and S. Kautz. 2016. Friend or foe light availability determines the relationship between mycorrhizal fungi, rhizobia and lima bean (Phaseolus lunatus L.). PloS ONE 11: e0154116. doi: https://dx.doi.org/10.1371/journal.pone.0154116. [ Links ]

Barcos Arias, M. S., J. J. Peña-Cabriales, A. Alarcón, and M. Maldonado Vega. 2015. Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with arbuscular mycorrhizal fungi consortium. Int. J. Phytoremediation 17: 405-413. doi: 10.1080/15226514.2014.898023. [ Links ]

Bi, Y., L. Qiu, Y. Zhakypbek, B. Jiang, Y. Cai, and H. Sun. 2018. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of northwest China. Agric. Water Manage. 201: 278-286. doi: https://doi.org/10.1016/j.agwat.2017.12.008. [ Links ]

Bye, R., E. Linares y D. Lentz. 2009. México: centro de origen de la domesticación del girasol. Rev. Esp. Cienc. Quím. Biol. 12: 5-12. [ Links ]

Chandrashekara, C. P., V. C. Patil, and M. N. Sreenivasa. 1995. VA-mycorrhiza mediated P effect on growth and yield of sunflower (Helianthus annuus L.) at different P levels. Plant Soil 176: 325-328. doi: https://doi.org/10.1007/BF00011797. [ Links ]

Corbera, J., V. M. Paneque, J. M. Calaña y C. Morale. 2008. Evaluación de sustratos y aplicación de hongos micorrízicos arbusculares (HMA) en el cultivo de Anthurium andreanum en etapa de vivero. Cult. Trop. 29: 27-33. [ Links ]

Davies, T. F., J. D. Puryear, R. J. Newton, J. N. Egilla, and G. J. A. Saraiva. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158: 777-786. doi: 10.1078/0176-1617-00311. [ Links ]

Daft, M. J. and A. A. E-Giahmil . 1978. Effect of arbuscular mycorrhiza on plant growth. New Phytol. 80: 365-372. [ Links ]

Friede, M., S. Unger, C. Hellmann, and W. Beyschlag. 2016. Conditions promoting mycorrhizal parasitism are of minor importance for competitive interactions in two differentially mycotrophic species. Front. Plant Sci. 7. 1465. doi: https://doi.org/10.3389/fpls.2016.01465. [ Links ]

Gholamhoseini, M., A. Ghalavand, A. Dolatabadian, E. Jamshidi, and A. Khodaei-Joghan . 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manage. 117: 106-114. doi: https://dx.doi.org/10.1016/j.agwat.2012.11.007. [ Links ]

Hassan, S. E., M. Hijri, and M. St-Arnaud. 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol. 30: 780-787. doi: https://doi.org/10.1016/j.nbt.2013.07.002. [ Links ]

Hernández-Cuevas, L. V., P. Guadarrama-Chavez, I. Sánchez-Gallen y J. Ramos-Zapata. 2012. Micorriza arbuscular, colonización intrarradical y extracción de esporas de suelo. pp. 1-6. In. F. J. Álvarez S. y A. Monroy A. (Comps.). Técnicas de estudio de las asociaciones micorrízicas y sus implicaciones en la restauración. UNAM Fac. de Ciencias. México, D. F. ISBN: 978-607-02-3493-4. [ Links ]

IAM-CUCEI (Instituto de Astronomía y Meteorología del Departamento de Física CUCEI Universidad de Guadalajara). 2017. Annual climatological summary. http://astro.iam.udg.mx/estacion/NOAAPRYR.TXT (Consulta: enero18, 2017). [ Links ]

Johnson, N. C., J. H. Graham, and F. A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575-585. doi: https://doi.org/10.1046/j.1469-8137.1997.00729.x. [ Links ]

Khan, A. G. 2006. Mycorrhizoremediation-an enhanced form of phytoremediation. J. Zhejiang Univ. Sci. B 7: 503-514. doi: https://doi.org/10.1631/jzus.2006.B0503. [ Links ]

Klironomos, J. N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301. doi: https://doi.org/10.1890/02-0413. [ Links ]

Ley-Rivas, J. F., J. A. Sánchez, N. E. Ricardo y E. Collazo . 2015. Efecto de cuatro especies de hongos micorrizógenos arbusculares en la producción de frutos de tomate. Agron. Costarricense 39: 47-59. [ Links ]

Liriano G., R., D. B. Núñez S. y R. Barceló Díaz. 2012. Efecto de la aplicación de Rhizobium y micorriza en el crecimiento del frijol (Phaseolus vulgaris L.) variedad CC-25-9 negro. Centro Agríc. 39: 17-20. [ Links ]

Lingua, G., E. Bona, V. Todeschini, C. Cattaneo, F. Marsano, G. Berta, and M. Cavaletto. 2012. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: A time course analysis. PloS ONE 7: e38662. doi: https://doi.org/10.1371/journal.pone.0038662. [ Links ]

Martínez-García, L. B., S. J. Richardson, J. M. Tylianakis, D. A. Peltzer, and I. A. Dickie. 2015. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol. 205: 1565-1576. doi: https://doi.org/10.1111/nph.13226. [ Links ]

Mehrotra, V. S. and U. Baijal. 1995. Effects of single and mixed inocula of VAM fungi on the growth and yield of sunflower (Helianthus annuus L.). Philippine J. Sci. 124: 183-201. [ Links ]

Moreno, M. E. 1996. Análisis físico y biológico de semillas agrícolas. UNAM México D. F. ISBN: 9688373044, 9789688373040. [ Links ]

Parra, M., M. Sánchez de Prager y E. Sieverding. 1990. Efecto de micorriza vesículo-arbuscular en café (Coffea arabica L.) variedad Colombia en almacigo. Acta Agron. 40: 88-99. doi: https://doi.org/10.15446/acag. [ Links ]

Phillips, J. M. and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. British Mycol. Soc. 55: doi: 158-161. doi: https://doi.org/10.1016/S0007-1536(70)80110-3. [ Links ]

Quiñones-Aguilar, E. E., E. Hernández-Acosta, G. Rincón-Enríquez y R. Ferrera-Cerrato. 2012. Interacción de hongos micorrízicos arbusculares y fertilización fosfatada en papaya. Terra Latinoamericana 30: 165-176. [ Links ]

Smith, S. E. and F. A. Smith . 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104: 1-13. doi: https://dx.doi.org/10.3852/11-229. [ Links ]

Soleimanzadeh, H. 2010. Effect of VA-Mycorrhiza on growth and yield of sunflower (Helianthus annuus L.) at different phosphorus levels. Int. J. Agric. Biosyst. Engin. 71: 414-417. doi: https://doi.org/10.5281/zenodo.1072373. [ Links ]

Soroa, M. R., S. L. Cortés y A. Hernández. 2003. Estudio del efecto de la aplicación de biofertilizantes sobre algunas variables de crecimiento y rendimiento en Gerbera jamesonni cv. Bolus. Cult. Trop. 24: 15-17. [ Links ]

Souza, T. 2015. Handbook of arbuscular mycorrhizal fungi. Springer. Coimbra, Portugal. ISBN: 978-3-319-24850-9. [ Links ]

StatPoint, Inc. 2005. StatGraphics Centurion XV version 15.02.06. Warrenton, Virginia, USA. [ Links ]

Trejo, D., R. Ferrera-Cerrato , R. García, L. Varela, L. Lara y A. Alarcón . 2011. Efectividad de siete consorcios nativos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev. Chilena Hist. Nat. 84: 23-31. doi: http://dx.doi.org/10.4067/S0716-078X2011000100002. [ Links ]

Trinidad-Cruz, J. R., E. E. Quiñones-Aguilar, L. V. Hernández-Cuevas, L. López-Pérez y G. Rincón-Enríquez . 2017. Hongos micorrízicos arbusculares asociados a la rizósfera de Agave cupreata en regiones mezcaleras del estado de Michoacán, México. Sci. Fungorum 45: 13-25. [ Links ]

Vangelisti, A., L. Natali, R. Bernardi, C. Sbrana, A. Turrini, K. Hassani-Pak , D. Hughes, A. Cavallini, M. Giovannetti, and T. Giordani. 2018. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci. Rep. 8. doi: https://doi.org/10.1038/s41598-017-18445-0. [ Links ]

Van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, A. Wiemken, and I. R. Sanders. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72. doi: https://doi.org/10.1038/23932. [ Links ]

Wilson, G. W. T. and D. C. Hartnett. 1997. Effects of mycorrhizae on plant growth and dynamics in experimental tallgrass prairie microcosms. Am. J. Bot. 84: 478-482. doi: 10.2307/2446024. [ Links ]

Yañez, P., H. Ohno, and K. Ohkawa. 2004. Effect of photoperiod on flowering and growth of ornamental sunflower cultivar. Environ. Contr. Biol. 42: 287-293. doi: https://doi.org/10.2525/ecb1963.42.287. [ Links ]

Zangaro, W., J. M. Dominguez Torezan, L. Vergal Rostirola, P. Bochi Souza, and M. A. Nogueira. 2015. Influence of mycorrhizas, organic substrates and container volumes on the growth of Heliocarpus popayanensis Kunth. CERNE 21: 395-403. doi: https://dx.doi.org/10.1590/01047760201521031335. [ Links ]

Recommended citation:

Vital-Vilchis, I., E. E. Quiñones-Aguilar, L. V. Hernández-Cuevas y G. Rincón-Enríquez. 2020. Crecimiento de girasol ornamental en maceta a nivel de campo por efecto de hongos micorrízicos arbusculares. Terra Latinoamericana Número Especial 38-3: 679-692. DOI: https://doi.org/10.28940/terra.v38i3.715

Received: January 08, 2020; Accepted: February 14, 2020

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons