SciELO - Scientific Electronic Library Online

 
vol.33 número2Tendencias de la migración interna de la población indígena en México, 1990-2015 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Estudios demográficos y urbanos

versión On-line ISSN 2448-6515versión impresa ISSN 0186-7210

Estud. demogr. urbanos vol.33 no.2 México may./ago. 2018

https://doi.org/10.24201/edu.v33i2.1739 

Artículos

Redistribución de la atractividad migratoria entre los municipios de México, 2000-2020

Redistribution of migratory attractiveness among Mexican municipalities, 2000-2020

Carlos Garrocho Rangel* 

Eduardo Jiménez López** 

*El Colegio Mexiquense, A.C. Dirección postal: Ex-Hacienda Santa Cruz de los Patos, 51350, Zinacantepec, Estado de México, México. Correo electrónico: cfgarrocho@gmail.com

**El Colegio Mexiquense, A.C. Dirección postal: Ex-Hacienda Santa Cruz de los Patos, 51350, Zinacantepec, Estado de México, México. Correo electrónico: ejimenez@cmq.edu.mx


Resumen

En este artículo develamos la redistribución espaciotemporal de la atractividad migratoria entre los municipios de México y las tendencias de convergencia/divergencia para 2000-2020 y el largo plazo. Evitamos utilizar un conjunto de indicadores económicos o de calidad de vida para representar la atractividad migratoria, porque su selección determina los resultados. En su lugar probamos las tasas netas de migración recientes (TNMR) intermunicipales como indicador de preferencia relevada restringida de los migrantes respecto a la elección de los destinos que les ofrecen condiciones (reales o percibidas) más favorables o menos adversas para vivir/trabajar, tanto para ellos como para sus familias. Consideramos que el comportamiento migratorio revelado por las TNMR es más confiable que utilizar variables basadas en la selección de expertos, y que la preferencia revelada de los migrantes se produce siempre en un marco de notables restricciones (incluyendo factores de expulsión que generan migración involuntaria). Aplicamos el análisis de Kernel y las cadenas de Markov. El perfil de la situación de largo plazo de las TNMR es casi el inverso del de 2000, lo que implica un proceso de convergencia redistributiva de la atractividad migratoria: los municipios menos atractivos al inicio del periodo de estudio recuperan capacidad de atracción de migrantes. El proceso de convergencia es débil en el largo plazo.

Palabras clave: migración interna; convergencia migratoria; cadenas de Markov; densidad de Kernel; México

Abstract

This article reveals the spatio-temporal redistribution of migratory attractiveness among Mexican municipalities and the convergence/divergence trends for 2000-2020 and the long term. We avoided using a set of economic or quality of life indicators to represent migratory attractiveness, because their selection determines the results. Instead, we tested the recent intermunicipal net migration rates (TNMR) as an indicator of the conditioned revealed preference of migrants regarding the choice of destinations that offer them more favorable or less adverse conditions (whether real or perceived) for living/working, for both themselves and their families. We consider that the migration behavior revealed by the TNMR is more reliable than using variables selected by experts and that the revealed preference of migrants always occurs within a framework of major restrictions (including expulsion factors that generate involuntary migration). We used Kernel analysis and Markov chains. The profile of the long-term situation of the TNMR is almost the opposite of the one in 2000, which implies a process of redistributive convergence of migratory attractiveness: the least attractive municipalities at the beginning of the study period have recovered their capacity to attract migrants. The convergence process is weak in the long term.

Keywords: internal migration; migratory convergence; Markov chains; Kernel density; Mexico

1. Introducción

Este trabajo, predominantemente exploratorio y metodológico, tiene los siguientes objetivos: i) develar la redistribución de la atractividad migratoria entre los municipios de México desde 2000 y proyectarla para el largo plazo, y ii) generar evidencia de los procesos de convergencia/divergencia de la atractividad migratoria entre los municipios del país.

La migración intermunicipal es un proceso demográfico que refleja, en parte, el éxito o falla de los municipios como lugares para vivir y/o trabajar. Migrar implica diversos costos (objetivos y subjetivos, tangibles e intangibles), por lo que se migra sólo si se anticipa que la situación en el destino será más favorable (o menos desfavorable) que en el origen (Harris y Todaro, 1970; Faist, 2012). En México, se puede suponer que los municipios con altas tasas de inmigración (v. g., atractores) ofrecen mejores condiciones (reales o percibidas) para vivir/trabajar que otros (siempre en un marco de notables restricciones para los migrantes), principalmente en materia de suelo y vivienda asequible y de empleo en el lugar o accesible desde el lugar (véanse diversos factores clave para los flujos de migración interna en Pérez y Santos, 2008 y Sobrino, 2010). Por su parte, los municipios con altas tasas de emigración (v. g., expulsores) son los que no han sido capaces de generar o sostener las condiciones de residencia requeridas por su población original, en términos absolutos (v. g., en comparación con sí mismos) o relativos (v. g., en comparación con los demás municipios). La evidencia sobre esto es abundante para México (Arroyo y Rodríguez, 2014; Partida, 2010; Pérez y Santos, 2008, 2013; Sobrino, 2014).

En este trabajo evitamos utilizar conjuntos de indicadores económicos o de calidad de vida seleccionados por los analistas para representar la atractividad migratoria, porque la selección y el peso de las variables afecta los resultados (e. g., García-Verdú, 2005; Moncada e Hincapié, 2013). En su lugar, usamos las tasas netas de migración recientes (TNMR) intermunicipales como indicador de preferencia revelada condicionada de los migrantes respecto a la elección de destinos que ofrecen mejores condiciones (reales o percibidas) para vivir/trabajar.1 Es decir, consideramos que el comportamiento migratorio revelado de las personas es más confiable que utilizar variables seleccionadas por especialistas.

Las TNMR tienen varias ventajas sobre otros indicadores migratorios. Por ejemplo, si se usa el número absoluto de inmigrantes se incorpora información directa sobre el tamaño de la población del origen y del destino, lo que distorsiona las comparaciones de flujos migratorios entre unidades espaciales (e. g., país, región, municipio) de tamaños poblacionales diversos. En cambio, el efecto neto de la inmigración y la emigración de la población (v. g., la TNMR) refleja mejor la dinámica migratoria y las diferencias entre orígenes y destinos (NAS, 2016).2

Algunos antecedentes recientes, aunque indirectos, de nuestro trabajo son las investigaciones de López (2008), Gutiérrez et al. (2011), Moncada e Hincapié (2013) y Villaverde (2004). Estos análisis exploran la convergencia/divergencia económica en diferentes regiones de México. En nuestro trabajo retomamos muchas de sus ideas y las adaptamos al análisis de la convergencia/divergencia de la atractividad migratoria entre los municipios del país, utilizando como indicador clave las TNMR intermunicipales.

1.1. Estrategia de presentación

El resto del texto se divide en cinco secciones. En la sección 2 valoramos algunas ventajas y desventajas de utilizar la migración como un indicador alternativo de redistribución territorial de las condiciones para vivir/trabajar. En la sección 3 repasamos la literatura para comparar nuestro indicador alternativo con los indicadores socioeconómicos tradicionales. Concluimos que nuestro indicador migratorio ofrece ciertas ventajas para explorar los procesos de convergencia/divergencia territorial. Especialmente porque es un indicador de preferencia revelada condicionada sobre los territorios de destino, que incluye información objetiva y subjetiva, individual y grupal, y el acceso e interpretación de la información sobre los destinos en un entorno de asimetría informativa y en un marco de múltiples restricciones. Es decir, refleja las preferencias de la población en su espectro de limitantes y posibilidades, y no depende de variables seleccionadas por los analistas. En esta misma sección advertimos que no todos los procesos de convergencia son deseables, ni todos los de divergencia son indeseables. Todo depende de la trayectoria y velocidad (endógena y exógena) de los cambios de la atractividad migratoria en los territorios y de la estrategia de desarrollo a diversas escalas espaciales. Esta reflexión es clave para interpretar mejor los resultados del análisis. La sección 4 es breve y se enfoca a explicar la estrategia metodológica y reportar las fuentes de información utilizadas. En la sección 5 presentamos los métodos que aplicamos y los resultados del análisis, y en la 6 sintetizamos los principales hallazgos y aportaciones del trabajo. El documento concluye con un listado de la bibliografía consultada.

2. ¿Por qué usar la migración como un indicador de redistribución territorial de condiciones para vivir/trabajar?

Usualmente los procesos de convergencia/divergencia en el territorio se han analizado con indicadores económicos o con una mezcla de indicadores económicos y sociales, dejando de lado numerosos temas difíciles de medir, como los culturales o políticos, así como la manera como las personas acceden y procesan la información sobre diversos temas clave en sus vidas cotidianas (Magrini, 2004).

La migración, entonces, puede ser un buen indicador alternativo, porque es resultado de desigualdades económicas y sociales en el territorio y en el tiempo (diferencias reales e imaginadas, tangibles e intangibles, siempre inestables), que generan flujos de población que cambian su residencia habitual con el objetivo de mejorar o evitar mayor deterioro en sus condiciones para vivir/trabajar (véase el clásico trabajo de Ravenstein, 1885). Las desigualdades territoriales (en México algunas de las más relevantes serían el precio del suelo y la vivienda, y el acceso al empleo; véase Arroyo y Rodríguez, 2014) son incentivos para migrar o permanecer en un lugar. Nadie migra si no tiene expectativas de obtener algún beneficio (o evitar un perjuicio) en lo individual y en lo familiar (Massey et al., 1994), porque migrar implica un costo importante (objetivo y subjetivo, integrado de manera compleja: económico, anímico, en términos de riesgo, esfuerzo, desapego) que se espera superar una vez que se consolide la estancia en el destino (Hagen-Zanker, 2008, pp. 1-25).

En un territorio homogéneo (real o percibido) no se producirán flujos migratorios porque no existirían incentivos para migrar. Por lo tanto, la migración es un indicador sintético de desigualdades territoriales (reales o percibidas). En general, en los países como el nuestro, la población abandona territorios que ofrecen condiciones menos propicias para vivir/trabajar y se dirige a lugares que ofrecen condiciones más favorables (objetivas, percibidas; cuantitativas, cualitativas; para los que migran y/o para las familias que se quedan en el origen) (Brettell y Hollifield, 2014, pp. 3-36).

Una ventaja importante de utilizar la migración como indicador sintético de redistribución territorial de condiciones para vivir/trabajar es que condensa efectos de múltiples variables situadas en diversas dimensiones, pero interrelacionadas en formas complejas y desconocidas (e. g., económicas: PIB, ingreso; socioculturales: situación política, tradiciones, costumbres; sicológicas: soledad, nostalgia, depresión). La situación de estas variables puede ser real o percibida (a escala individual o colectiva) y se interrelacionan de manera dinámica en el tiempo y el espacio. Aún más, la migración es sensible a la disponibilidad y percepción de información compleja y diversa sobre las condiciones en el origen y en el destino -a escala individual, familiar y comunitaria-, y a la valoración subjetiva que las personas hacen de esa información (Hagen-Zanker, 2008). En cambio, los indicadores tradicionales socioeconómicos dependen de la selección de variables que hagan los analistas sobre los procesos de redistribución territorial de las condiciones para vivir/trabajar, y cada selección de variables puede generar resultados diferentes.

Sin embargo, también hay desventajas en utilizar la migración como indicador de redistribución territorial de condiciones para vivir/trabajar. Las primordiales: no arroja luz sobre la evolución de las variables específicas (e. g., PIB, ingreso, empleo, calidad de vida) y no es posible saber si las diversas dimensiones del desarrollo convergen o divergen de manera manifiesta. Adicionalmente, la forma de medir la migración es complicada y tiene serias debilidades (Garrocho, 2011), aunque lo mismo se puede decir de la medición de numerosos aspectos económicos y sociales utilizados tradicionalmente en los análisis de convergencia/divergencia (desde el PIB hasta la calidad de vida; véase Stiglitz et al., 2011).

Otra característica importante de explorar la convergencia/divergencia de la migración interna es que el sistema migratorio es un juego de suma cero. Es decir, el sistema migratorio compensa con exactitud la ganancia o pérdida de migrantes de un municipio, con las pérdidas o ganancias de los demás. Por tanto, no es posible que se logre un estado de convergencia municipal plena hacia la atracción o expulsión de población, porque, si todos los municipios son atractores de migrantes, ¿cuáles municipios expulsan población? Y en el caso contrario, si todos los municipios expulsan población, ¿cuáles atraen migrantes? La única posibilidad de convergencia plena es en la situación en la que todos los municipios mantengan un estado de equilibrio migratorio. Sin embargo, la convergencia plena es una posibilidad hipotética que rara vez se encontrará en la realidad. Lo que sí se va a encontrar son tendencias hacia la convergencia/divergencia.

Dos advertencias: i) no todos los procesos de convergencia son deseables, ni todos los de divergencia son indeseables, como se explicará más adelante, por lo que tratamos de no hacer juicios de valor al respecto; y, ii) las proyecciones de largo plazo que aquí se presentan no son pronósticos. Sólo son escenarios exploratorios que bosquejan tendencias y permiten detectar, de manera condicionada, algunas características del sistema migratorio (e. g., alta volatilidad migratoria, fuerte competencia intermunicipal) que pueden ser insumos para políticas públicas a diversas escalas espaciales (e. g., elevar la calidad de las instituciones municipales, promover alianzas estratégicas entre municipios).

3. Síntesis del debate sobre los procesos de convergencia/divergencia territorial: adaptación a la escala municipal

Se puede decir que existen dos corrientes teóricas principales en el debate conceptual sobre la existencia de procesos territoriales de convergencia/divergencia a escala de países o macrorregiones. La primera, de carácter neoclásico, propone que en el largo plazo los cambios y la difusión de la tecnología, sumados a diversos mecanismos del mercado, favorecen que los territorios con menor desarrollo logren tasas de crecimiento superiores a las de los territorios más desarrollados. Esto conduce a la hipótesis de convergencia catch-up, que propone que la diferencia tecnológica entre el territorio líder, que innova y genera avances tecnológicos, y los seguidores, que simplemente adoptan esa nueva tecnología, se irá reduciendo porque es más rápido y barato adoptar tecnología que generarla. Por tanto, “en el largo plazo las tasas de crecimiento de la productividad tienden a variar inversamente con los niveles de productividad inicial” (Abramovitz, 1986, p. 385). Esta tendencia de crecimiento apuntaría también a la convergencia del ingreso per cápita (Targetti y Foti, 1997, p. 29) y a las condiciones para vivir/trabajar. La convergencia puede ser débil o no ser plena y es complicado determinar qué se entiende por “largo plazo”, pero se propone que existen periodos en que existe cierto grado de convergencia. En la hipótesis de convergencia catch-up son más importantes las variables externas o exógenas al territorio (e. g., la tecnología generada por el líder), que las variables internas o endógenas (e. g., producir avances tecnológicos propios) (Serrano, 1998).

En la escala municipal el principal factor exógeno no sería el avance tecnológico, sino, principalmente, la diferencia entre las condiciones para vivir/trabajar del entorno (e. g., ciudades potentes) y las de cada municipio. Por ejemplo, en general los beneficios de vivir y trabajar en las grandes ciudades son mayores a los costos que eso implica, lo que genera ventajas exógenas a los municipios que pertenecen a grandes zonas urbanas. Las economías de aglomeración en territorios altamente urbanizados generan clusters de firmas en el espacio, lo que incrementa la productividad y los salarios. Esto explica en parte que los trabajadores de las grandes ciudades por lo regular ganen salarios más altos que los de las ciudades de menor tamaño (Gleaser, 2012). Sin embargo, conforme la urbe crece, el nivel del salario promedio más alto que ofrece la ciudad a sus residentes se ve afectado por diversas características indeseables de las grandes áreas urbanas; por ejemplo: largos viajes intraurbanos (al trabajo, a la escuela, principalmente), densidades de población muy altas que obligan a gran parte de los habitantes a vivir en edificios de departamentos pequeños y costosos, congestión de automóviles, contaminación, inseguridad, menor disponibilidad de tiempo para la convivencia familiar y el esparcimiento, entre otros (Storper, 2013). Incluso puede llegar un punto en que la utilidad de los trabajadores decrezca debido a que las economías de aglomeración se ven superadas por las deseconomías de la urbanización. En este caso, los trabajadores pueden incrementar su utilidad cambiando su localización residencial, lo que generaría procesos de convergencia territorial (e. g., a escala urbana, municipal) (O’Sullivan, 2011).

La otra vertiente teórica dominante de los análisis de convergencia/divergencia a escala de país (o regiones integradas por varios países) se apoya en las teorías de crecimiento endógeno, que proponen que los factores productivos acumulables (e. g., progreso tecnológico, capital humano, calidad de las instituciones) no necesariamente registran rendimientos decrecientes, lo que conduce a la hipótesis de divergencia. Así, los factores endógenos (v. g., los que son propios del territorio, como la competitividad, el capital humano, la disponibilidad de suelo, vivienda, empleo) y las fuerzas del mercado pueden favorecer una acumulación creciente de ventajas en ciertos territorios, aumentando la divergencia (Piketty, 2014; Pritchett, 1996). Por tanto, es posible que un territorio líder mantenga sus condiciones de ventaja, e incluso las incremente a lo largo del tiempo. La razón: los efectos de múltiples externalidades positivas, como la difusión del conocimiento en ciencia y tecnología entre los productores, y las derivadas de las economías de escala y aglomeración; por ejemplo, la tendencia a la baja de los costos unitarios conforme se incrementa la cantidad producida, o la existencia de clusters productivos o científicos que favorecen las interacciones empresariales (Moncayo, 2004). Desde esta perspectiva, la convergencia territorial no es ineludible en el largo plazo.

A escala municipal las ventajas crecientes de algunos municipios se relacionarían con externalidades positivas vinculadas con sus condiciones favorables para vivir/trabajar, pero también con economías de escala y de aglomeración. Si estas ventajas se sostienen en el tiempo, el resultado apuntaría en el sentido contrario a lo que pronostica el enfoque de convergencia catch-up. Las condiciones para vivir/trabajar son poderosos atractores o expulsores de población a escala municipal: un ejemplo claro de municipio atractor es Mérida (condiciones favorables), mientras los municipios expulsores son varios de Veracruz, Zacatecas o Guerrero (condiciones desfavorables) (Almejo y Campos, 2013). Si estas condiciones se mantienen en el tiempo, el resultado será un incremento en la divergencia municipal. Sin embargo, a escala de municipio las condiciones para vivir/trabajar son mucho más volátiles que a escala nacional. En México la violencia las afecta notablemente (Durin, 2012), aunque no es el único factor clave4.

Quizá la diferencia central entre los dos enfoques es que el de catch-up propone una convergencia casi natural en el largo plazo, mientras que en el enfoque de crecimiento endógeno ésta no es inevitable, e incluso existe una mayor probabilidad de que se mantengan y amplíen las divergencias territoriales.

3.1. No todos los procesos de convergencia son deseables, ni todos los de divergencia son indeseables

Al hacer comparaciones en el tiempo de la situación migratoria municipal es importante notar que los cambios pueden medirse en términos atomizados y sistémicos. Por atomizados nos referimos a cambios en el desempeño de los municipios en el momento (t) comparados con su propio desempeño en (t-1). Es decir, es una comparación de los municipios contra sí mismos. Por sistémicos nos referimos a los cambios en el desempeño de cada municipio respecto a los demás municipios, que son los otros integrantes del sistema migratorio (v. g., los competidores). En estos términos, un municipio puede mejorar notablemente su desempeño, pero si sus competidores registran una mejor actuación, no cambiará su situación migratoria (que refleja sus condiciones como lugar para vivir/trabajar en relación con los demás). En otras palabras, para ser municipio atractor no basta simplemente con mejorar las condiciones propias, se debe mejorar más que los demás.

Así, los cambios de la atractividad migratoria de los municipios pueden deberse a: i) cambios positivos o negativos de la atractividad migratoria (v. g., cambio de trayectoria), y ii) velocidad de cambio. En ambos casos nos referimos tanto al desempeño de cada municipio en lo particular, como a su desempeño comparado con el de los demás municipios del sistema migratorio. Esto significa que los municipios pueden incrementar o debilitar su atractividad de migrantes con relación a sí mismos y a los demás en un entorno sistémico de suma cero (porque hablamos de migración interna). Por ejemplo, puede haber convergencia en un contexto de debilitamiento de todos los municipios, pero con mayor intensidad entre los líderes (lo que podría ser indeseable) o en un contexto de avances de los más rezagados, pero de debilitamiento de los líderes (lo que también podría ser indeseable). Por el otro lado, podemos imaginar un escenario donde se aprovechan ciertas condiciones para intentar concentrar la población mediante la aglomeración del empleo (e. g., clusters tecnológicos, polos de conocimiento, distritos industriales). Esto podría generar divergencia, y aun así ser un escenario deseable, si estas concentraciones de inversión y empleo se consolidan como motores potentes del desarrollo con amplios efectos difusores (Krugman, 1995; Porter, 1998).

En conclusión, no todos los procesos de convergencia son deseables, ni todos los de divergencia son indeseables, a diferencia de lo que se proponía hasta hace relativamente poco, en que se hacía una defensa a ultranza del llamado “equilibrio regional” (De Mattos, 1990). Todo depende de la trayectoria y la velocidad del cambio en las dimensiones atomizada y sistémica, así como de los objetivos y estrategias de desarrollo a diferentes escalas espaciales.

4. Estrategia metodológica y fuentes de información

Estimamos funciones de densidad de Kernel y cadenas de Markov para examinar la convergencia/divergencia de las TNMR entre los 2 456 municipios de México5. Las funciones de densidad no paramétricas de Kernel las usamos para representar sintéticamente nuestro indicador clave de las condiciones para vivir/trabajar de los municipios: las TNMR. La aproximación de Kernel tiene la ventaja de no suponer ninguna forma de la distribución de la información estadística, facilita generar gráficos bi y tridimensionales y detectar la existencia de grupos de municipios con un comportamiento estadísticamente similar entre ellos y distinto del de los demás municipios (clubes de convergencia). Al final, este trabajo permite explorar la pregunta, ¿los municipios tienden a la convergencia/divergencia de sus condiciones para vivir/trabajar?

El análisis de Kernel genera información importante pero no suficiente para determinar la convergencia/divergencia de procesos en el territorio. Por eso complementamos el análisis de la dinámica de las TNMR con cadenas de Markov (CM), que permiten examinar, mediante matrices de transición, los cambios de situación migratoria de cada una de las categorías de municipios: si permanecen o cambian como expulsores o atractores de población. Este cambio de comportamiento migratorio es un síntoma de la redistribución de las condiciones para vivir/trabajar a lo largo del periodo analizado.6 Adicionalmente, las CM permiten perfilar el estado estacionario hipotético de la distribución de la atractividad migratoria entre los municipios en México en el largo plazo, considerando como base la situación inicial del sistema migratorio municipal. Con las cadenas de Markov exploramos la pregunta, ¿cuáles fueron las transiciones de los municipios entre las categorías de atracción/expulsión en el periodo analizado, y cuál es el estado más probable de la distribución de las condiciones para vivir/trabajar en el largo plazo?

La principal fuente de información fue la base de datos del Consejo Nacional de Población construida especialmente para este trabajo. El Consejo clasifica los municipios según su condición migratoria de la siguiente manera: i) expulsión elevada, ii) expulsión media, iii) equilibrio, iv) atracción media, y v) atracción elevada. El sistema de clasificación para este tipo de estudios depende de los objetivos de cada investigación (Gutiérrez et al., 2011, p. 149), por lo que esta categorización nos resultó adecuada. Para los cálculos del análisis de Kernel y de las cadenas de Markov se utilizó Matlab.

5. Métodos y análisis empírico

5.1. Análisis de Kernel: método

El análisis de Kernel es una alternativa al análisis no paramétrico tradicional de convergencia, ya que no requiere conocer o asumir la forma de la distribución estadística de los datos, sino que permite calcular una función de densidad en torno a valores muestrales. Es decir, la función de Kernel “deja que los datos hablen”7. Quizá por eso es uno de los métodos más utilizados para develar procesos de convergencia/divergencia (Terrell y Scott, 1992; Chow et al., 2016).

En el análisis de Kernel estimamos la siguiente función de densidad:

(1)

donde n es el número de unidades espaciales consideradas en el análisis (v. g., los 2 456 municipios de México), v ij se refiere a cada una de las observaciones de la variable j (v. g., las TNMR) y h es el parámetro que suaviza el comportamiento de los datos para ajustarlos a una función no paramétrica. La variable v ij se normaliza a partir de su media.

El análisis de Kernel ofrece distintas alternativas para la construcción de funciones de densidad. En este trabajo se recurrió al Kernel gaussiano, por su eficiencia de cálculo y por ser, quizá, el más utilizado en la literatura especializada (Silverman, 1986; Le Gallo, 2004)8.

Por facilidad de cálculo se supone aquí una distribución univariante que responde a la expresión:

(2)

Si la Ecuación 2 se sustituye en la Ecuación 1, se tiene:

(3)

Con lo que obtenemos la siguiente ecuación:

(4)

En este contexto, la tendencia a la convergencia implica que el cúmulo de datos de probabilidad esté cada vez más concentrado. La función Kernel detecta cómo se acumulan los datos al representar gráficamente la Ecuación 4 (Betancourt, 2013).

El resultado de la estimación depende de la acertada elección del parámetro h (ancho de banda) que suaviza el comportamiento de los datos para ajustarlos a una función no paramétrica (Salgado-Ugarte y Pérez-Hernández, 2003)9. Dada la importancia de la elección del parámetro h, la literatura sugiere diferentes criterios para determinarlo. La opción de Silverman (1986) es la más aplicada, como reportan diversos autores (López, 2008; Gutiérrez et al., 2011). Se estima de la siguiente forma (Brufman et al., 2005):

(5)

donde n es la cantidad de datos, σ es la desviación estándar de los datos y R es el rango intercuartil de los datos. Aplicando la Ecuación 5 se obtuvo que, para los datos de 2000, h = 0.82 y para los datos de 2010: h = 1.04.

Tomando como referencia el criterio de Silverman (1986), en la Figura 1 se observa el suavizado variando el parámetro h. La Figura 1 (c, d) corresponde a un estimador infrasuavizado h = 0.1 para los años 2000 y 2010, respectivamente. Estos gráficos registran un gran número de oscilaciones que corresponden a falsas modas. El número de éstas aumentaría si se disminuyera aún más el valor de h.

Figura 1 Estimaciones de la función de densidad de las tasas netas de migración reciente a escala municipal para México con diferentes parámetros h, 2000 y 2010 

5.2. Resultados del análisis de Kernel

La Figura 1a sugiere una distribución unimodal de los datos en 2000, utilizando el ancho de banda h = 0.82. En el año 2000 la moda de la función de Kernel se ubicó en -2.1. El signo implica que prevalecen los municipios con condiciones adversas (v. g., no atractivos) como lugares para vivir y/o trabajar. En términos de población, el valor del pico se traduce como una disminución de la población de dos personas en promedio anual, por cada mil residentes10.

El análisis para 2010 también muestra una distribución unimodal utilizando un ancho de banda h = 1.04, con un Kernel centrado casi en el origen (Figura 1b). Los datos se agrupan en -1.1. Esto significa que los municipios siguen registrando tendencia a ser expulsores de población, como ocurría en 2000. Sin embargo, con menor intensidad, la disminución de la población en 2010 era de una persona en promedio anual por cada mil residentes. No obstante, se observa el surgimiento de un conjunto de datos alrededor de otro valor (+2.2), lo que sugiere la existencia de un grupo de municipios que atraen significativamente más población de la que expulsan (v. g., que mejoraron notablemente sus condiciones para vivir/trabajar). Obsérvese cómo la función gaussiana de 2000 se deforma para 2010 (donde señala la flecha en la Figura 1b).

Una propiedad del análisis de Kernel es que permite estimar las llamadas líneas de contorno, que facilitan develar la dinámica de la distribución hacia la convergencia o divergencia. La Figura 2 muestra las superficies de densidad de referencia de los análisis de Kernel (Ardila Rueda, 2004, p. 245). Cada línea de contorno señala los puntos para los cualestiene un valor constante. Las superficies de referencia de la Figura 2 ofrecen un punto de comparación para los resultados obtenidos en nuestro análisis, en relación con cuatro posibilidades clave: persistencia, movilidad, convergencia y divergencia.

La Figura 2a sugiere persistencia y, en consecuencia, baja movilidad de los municipios entre categorías (e. g., de expulsores a atractores, o viceversa). La Figura 2b presenta la situación opuesta a la 2a: un comportamiento migratorio de los municipios en donde predomina la movilidad (v. g., un comportamiento migratorio cambiante) y, en consecuencia, una alta transición de los municipios entre categorías. No obstante, ninguna de las superficies representadas en las Figuras 2a y 2b implica convergencia/divergencia. La Figura 2c es la superficie típica de convergencia, ya que la distribución de los datos se concentra alrededor de un valor sobre el eje t + s (donde se registra el comportamiento de la variable: en nuestro caso las TNMR). Si las TNMR tienden a agruparse en una posición perpendicular al eje de las abscisas (t + s), existe convergencia porque se agrupan (v. g., convergen) en un cierto momento (t). Finalmente, la Figura 2d muestra la típica superficie de divergencia: las TNMR están totalmente dispersas en un momento (t), formando una línea perpendicular al eje de las ordenadas.

Figura 2 Superficies de densidad típicas de referencia 

Con el apoyo de la Figura 2 (que es teórica) podemos analizar sistemáticamente la Figura 3, que muestra los resultados. Recordemos que la Figura 2 muestra casos típicos puros que difícilmente se van a encontrar en la realidad. Lo que se encuentra en el mundo real son matices de esas situaciones extremas.

La Figura 3 sintetiza las características clave de la dinámica de las TNMR de los municipios de México para el periodo de estudio: i) en 2000 predominan los municipios en los que la emigración es mayor que la inmigración, es decir, prevalecen los municipios no atractivos como lugares para vivir y/o trabajar (v. g., la moda es negativa); ii) para 2010 siguen predominando los municipios no atractivos, pero la diferencia con los municipios atractivos se reduce (la moda es negativa, pero de menor magnitud que en 2000); además, se registra un grupo de municipios que se destacan como atractores de población (la deformación de la curva 1b, correspondiente al periodo 2000-2010); iii) se registra un proceso de convergencia de las TNMR (v. g., las TNMR tienden a agruparse en una posición perpendicular al eje de las abscisas); y iv) la pendiente de la función de Kernel apenas es positiva, lo que sugiere una tendencia hacia la movilidad o transición entre estados migratorios.

Figura 3 Superficies de las funciones de densidad Kernel utilizando las tasas netas de migración reciente a escala municipal para México, 2000 y 2010 

5.3. Cadenas de Markov: método

Las cadenas de Markov son uno de los métodos más útiles para modelar procesos estocásticos y su evolución probabilística, conociendo solamente la situación presente. Los flujos migratorios (y muchos otros procesos) observados en el tiempo (y en el espacio) son a menudo modelados mediante procesos estocásticos, entendidos como cualquier colección de variables aleatorias {X (t)} dependientes del tiempo t (Cameron y Poot, 2011). El tiempo puede medirse en unidades discretas, por ejemplo t = 0, 1, 2,... o continuas: t ≥ 0. En cualquier momento, t describe la observación de una variable aleatoria que denotaremos X t o X(t). Sea {X n }n≥0 un proceso estocástico discreto con espacio de estados contable E = {i, j, k,…}.

Un proceso estocástico (X) es markoviano si la probabilidad condicional de un evento futuro en t +1 no depende de un evento pasado, sino sólo del evento presente del proceso. Esto se muestra en la Ecuación 6, donde ambos lados de la ecuación están bien definidos.

(6)

Este proceso estocástico se llama cadena de Markov. Se dice que dicha cadena es homogénea si el lado derecho de la Ecuación 6 es independiente de n. La Ecuación 7 muestra las propiedades de Markov para todas las variables i, j (Yin y Zhang, 2010).

(7)

donde P ij es la matriz de transición, en nuestro caso la matriz de cambios de estado (o situación migratoria) de los municipios; i es la clasificación inicial de los municipios según sus TNMR, y j la clasificación en 2010.

En este trabajo, el proceso estocástico X 1, X 2, X 3, ... representa grupos de municipios clasificados según el valor de su TNMR11. Dicho de otro modo, cada grupo X t representa una cierta relación de inmigración y emigración en la que puede ubicarse cada municipio (Arrufat et al., 2006). Así, p i = (p ij ) j∈E es un vector de probabilidades para cada i.12

El proceso de cadenas de Markov puede alcanzar una situación de equilibrio, es decir, confluir hacia un vector de categorías estacionarias en el largo plazo que se mantienen sin cambios. Esto se cumple cuando n → ∞, entonces p n tiende a una matriz como la que se muestra en la Expresión 8.

(8)

donde cada fila es igual al vector (Ecuación 9) y sus elementos suman uno:

(9)

En este caso, u es un vector de un grupo estacionario para cualquier vector de probabilidad x, xp n u, cuando n → ∞. También el vector del grupo estacionario es único y satisface que up = u.

Con el vector de grupo estacionario se puede observar el comportamiento de las probabilidades de migración/emigración en el largo plazo. En consecuencia, las cadenas de Markov permiten conocer las probabilidades finales de que los municipios se mantengan en una u otra categoría migratoria, en un horizonte temporal lo suficientemente amplio como para validar la existencia de un proceso de convergencia/divergencia, si las condiciones iniciales se mantienen.

Para el análisis de convergencia/divergencia, Quah (1993) discretiza la distribución de la variable bajo análisis en cinco grupos mutuamente excluyentes, que en nuestro caso corresponden a la clasificación de los municipios que hace el Consejo Nacional de Población (Conapo, 2015) según la condición migratoria de cada municipio: i) expulsión elevada (EE), ii) expulsión media (EM), iii) equilibrio (EQ), iv) atracción media (AM), y v) atracción elevada (AE) (Cuadro 1).

Cuadro 1 Vectores de estado inicial, 2000-2010 

Año EE EM EQ AM AE Total
2000 548 482 221 594 611 2 456
% 22.3 19.6 9.0 24.2 24.9 100.0
2010 850 754 205 301 346 2 456
% 34.6 30.7 8.3 12.3 14.1 100.0

EE: expulsión elevada; EM: expulsión media; EQ: equilibrio; AM: atracción media; AE: atracción elevada.

Fuente: Elaboración propia con datos del Conapo, 2015.

5.4. Resultados de las cadenas de Markov: dinámica de la atracción migratoria entre los municipios de México

La clasificación migratoria de los municipios que hace el Conapo es consistente con los propósitos de este estudio. Por tanto, las categorías migratorias del Conapo son las situaciones o estados entre los que transitan los municipios13. Los vectores iniciales totales (x 0) se construyeron a partir de los municipios que estaban en el año inicial en cada categoría, en relación con el total (Cuadro 1).

Lo primero que llama la atención de los vectores iniciales (Cuadro 1) es el incremento de los municipios de expulsión de 2000 a 2010. Los de expulsión elevada pasaron de 548 a 850 (un incremento de 55.1%) y los de expulsión media subieron de 482 a 754 (un aumento de 56.4%). En total, los municipios expulsores de población, es decir, los municipios no atractivos como lugares para vivir/trabajar, pasaron de 1 030 en 2000 a 1 604 en 2010 (un aumento de 574 municipios). Mientras al inicio del periodo los municipios no atractivos representaban 41.9% del total nacional, diez años después su proporción subía a 65.3% del total: en 2010 casi dos de cada tres municipios no eran lugares atractivos para vivir y/o trabajar (Cuadro 1).

Por su parte, los municipios en situación migratoria de equilibrio decrecieron ligeramente (de 9.0% en 2000 a 8.3% en 2010), por lo que podemos hablar de una situación estacionaria. Sin embargo, como era de esperarse, los municipios atractores de población (los municipios atractivos) disminuyeron notablemente. Los de atracción media se redujeron prácticamente a la mitad (una reducción de 49.3%) y los de atracción elevada ligeramente menos (reducción de 43.4%). En total los municipios atractivos se redujeron en la década de 1 205 a 647: una reducción porcentual de 46.3 por ciento.

En resumen, durante la primera década del siglo XXI se reconfiguró drásticamente el país en términos de la redistribución de la atractividad migratoria en el territorio a escala municipal. Aumentaron notablemente los municipios no atractivos y se redujeron drásticamente los atractivos. Esto se puede leer como un proceso de divergencia en el que se polarizan los municipios atractivos y no atractivos para vivir/trabajar, y en el que la mayoría de los municipios pierden potencia como lugares atractivos para vivir/trabajar.

Matrices de transición, 2000-2010

Mientras el análisis de Kernel permite examinar la evolución de la forma de la distribución estadística de las TNMR, no es útil para observar los cambios en el interior de la distribución a lo largo del tiempo. Una manera de subsanar este problema es aplicar cadenas de Markov para derivar matrices de probabilidades de transición, que representan la probabilidad de estar en un estado k en el periodo t+1, a partir de la distribución en el periodo t (Moncada e Hincapié, 2013).

Determinamos la construcción de las matrices de transición para 2000-2010 por conteo de cambios entre categorías de los municipios de un año a otro. Para esto no se requiere aplicar cadenas de Markov (que se aplicarán para la proyección del segundo estado de transición 2010-2020); basta consultar las fuentes de información y ordenarlas como en el Cuadro 2.

El Cuadro 2 (columna m) y la Figura 4 confirman la situación de divergencia en 2010: 65.3% de los municipios se concentraban en las dos categorías de expulsión. Sin embargo, si hacemos un zoom, se observa que entre 2000 y 2010 los municipios de expulsión elevada (EE) mostraron cierta capacidad de mejorar su situación migratoria (véase el renglón EE del Cuadro 2). Si bien más de un tercio permanecieron en la misma categoría (36.1%), casi 64% la mejoraron e incluso uno de cada tres (33.9%) pasaron de expulsores a atractores de población (351 municipios), de lo que se infiere que fueron capaces de mejorar de manera importante sus condiciones para vivir/trabajar en sólo una década. Esto sugiere dos cosas: i) un proceso de redistribución progresiva de las condiciones para vivir/trabajar que favorece a los municipios de EE, y ii) que existe la posibilidad real de revertir déficits de condiciones para vivir/trabajar en la escala municipal, incluso en una situación general de divergencia.

Si leemos la columna EE del Cuadro 2, observamos que las categorías de municipios que están en mayor riesgo de bajar a esa categoría son los de expulsión media (EM) y los de equilibrio (EQ), lo que es lógico; pero incluso alrededor de 12.3% de los municipios que registraban situaciones de atracción media (AM) y elevada (AE) pasaron a EE, lo que implica volatilidad de la redistribución de condiciones para vivir/trabajar en esa década de alta violencia en México (Durin, 2012). Esto es consistente con la pendiente apenas positiva de la función de Kernel, lo que indicaba una tendencia hacia la movilidad entre estados (véase la sección 5.2).

Cuadro 2 Matriz de transición, 2000-2010 

t+1
EE EM EQ AM AE m %
EE 36.1 22.6 7.4 17.8 16.1 850 34.6
EM 17.1 22.9 11.4 32.9 15.6 754 30.7
t EQ 15.6 22 9.3 28.3 24.9 205 8.3
AM 12.3 5 4.3 34.6 43.9 301 12.3
AE 12.4 16.5 11.6 9.5 50.0 346 14.1
2456 100.0

Fuente: Elaboración propia con datos del Conapo, 2015.

Figura 4 Distribución porcentual de las categorías de municipios, 2010 

En la categoría de expulsión media (EM), 22.9% de los municipios registran una tendencia a mantenerse en ese mismo estado (173 municipios) y sólo 17.1% se convirtieron en munic