SciELO - Scientific Electronic Library Online

 
vol.40 issue2Resistance evaluation of oat genotypes to stem rust (Puccinia graminis f. sp. avenae)Disinfectants effectiveness in Tomato brown rugose fruit virus (ToBRFV) transmission in tobacco plants author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de fitopatología

On-line version ISSN 2007-8080Print version ISSN 0185-3309

Rev. mex. fitopatol vol.40 n.2 Texcoco May. 2022  Epub Oct 03, 2022

https://doi.org/10.18781/r.mex.fit.2201-1 

Phytopathological notes

Potential biocontrol mechanisms of Bacillus sp. TSO2 against Bipolaris sorokiniana, spot blotch in wheat

Valeria Valenzuela-Ruiz1 

Fannie I. Parra-Cota2 

Gustavo Santoyo3 

Sergio de los Santos-Villalobos1  * 

1Instituto Tecnológico de Sonora, 5 de febrero 818 sur, 85000 Ciudad Obregón, Sonora, Mexico;

2Campo Experimental Norman E. Borlaug, INIFAP, Norman E. Borlaug km 12, C.P. 85000 Ciudad Obregón, Sonora, México;,

3Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México;


Abstract.

Bipolaris sorokiniana is a pathogen of cereals such as wheat and barley, causing root rot, leaf blight, seedling blight, and spot blotch. This phytopathogen causes a considerable reduction in cereal yield of up to 85%. Thus, sustainable alternatives to the application of synthetic fungicides are determinants for the control of phytopathogens, such as the application of biological control agents. This study aims to identify the potential biocontrol mechanisms of the bacterial strain TSO2 by sequencing, annotation, and mining its genome. The draft genome of strain TSO2 was sequenced through the Illumina Miseq platform and presented 4,242,212 bp, 43.9% G+C content, 300,069 bp N50, 5 L50, 47 contigs, 96 RNAs, and 4,432 predicted coding DNA sequences. Besides, the presence of 86 CDS of agricultural importance involved in virulence, disease, defense, iron acquisition, and secondary and phosphate metabolisms was detected. On the other hand, seven putative secondary metabolite gene clusters involved in biocontrol activity were identified in the genome of strain TSO2. Bacillus sp. TSO2 contains a great number of biosynthetic gene clusters which supports its biocontrol activity against phytopathogenic fungi. Thus, this strain needs to be further studied as a potential bioactive ingredient for the biopesticide formulation due to its high potential as a biological control agent.

Key words: Biological control agents; Genomics; antiSmash; biofungicide; sustainable agriculture

Resumen.

Bipolaris sorokiniana es un patógeno de cereales como el trigo y la cebada, que causa pudrición de la raíz, tizón de la hoja, tizón de la plántula y mancha borrosa. Este patógeno genera una reducción considerable en el rendimiento de cereales hasta en un 85%. Así, alternativas sostenibles a la aplicación de fungicidas sintéticos son determinantes para el control de fitopatógenos, como la aplicación de agentes de control biológico. El objetivo de este estudio es identificar los potenciales mecanismos de biocontrol de la cepa bacteriana TSO2, a través de la secuenciación, anotación y la minería de su genoma. El borrador del genoma de la cepa TSO2 se secuenció a través de la plataforma Illumina Miseq y presentó 4,242,212 pb, 43.9% de contenido de G+C, 300,069 pb N50, 5 L50, 47 contigs, 96 ARN y 4,432 secuencias de ADN codificantes (CDS, por sus siglas en inglés). Además, se detectó la presencia de 86 CDS de importancia agrícola involucrados en la virulencia, enfermedad, defensa, adquisición de hierro y metabolismo secundario y de fosfato. Por otro lado, se identificaron siete grupos de genes de metabolitos secundarios putativos en el genoma de la cepa TSO2. Bacillus sp. TSO2 contiene una gran cantidad de grupos de genes biosintéticos que favorece la actividad de biocontrol contra hongos fitopatógenos. Por lo tanto, esta cepa debe estudiarse más a fondo como un potencial ingrediente bioactivo para la formulación de bioplaguicidas, debido a su alto potencial como agente de control biológico.

Palabras clave. Agentes de control biológico; genómica; antiSmash; biofungicida; agricultura sostenible

Bipolaris sorokiniana is a pathogen of cereals, such as wheat (Triticum turgidum) and barley (Hordeum vulgare), causing root rot, leaf blight, seedling blight, and spot blotch. This disease affects seed germination and seedling emergence, generating a considerable reduction in yield of up to 85% (Mehta, 2014). Currently, disease management against B. sorokiniana is carried out through the foliar application of ergosterol biosynthesis disruptors from the triazole group, despite these being reported with harmful effects, such as soil contamination, inhibition of non-target organisms, and human cytotoxicity (Villa-Rodríguez et al., 2019). In addition, this is strategy not only toxic to humans but also harmful to the environment and results in an imbalance within the soil microbial community and a rapid increase in the spread of resistance genes (Ahmad et al., 2018). Thus, sustainable alternatives to the application of synthetic fungicides are determinants for the control of phytopathogens, such as the application of biological control agents.

Currently, the most studied, produced, and commercialized bacterial biological control agents are the Bacillus species, due to its high efficacy, safety, and ability to form spores, allowing it to prevail in most agroecosystems (Villareal-Delgado et al., 2018; Córdova-Albores et al., 2020). Thus, this study aims to identify the potential biocontrol mechanisms of the bacterial strain TSO2 by sequencing, annotation, and mining its genome to explore the use of this strain for biopesticides formulation.

In this way, strain TSO2 was isolated from the soil where durum wheat was planted commercially, in the Yaqui Valley, Mexico (27.3692°, 110.3886°), using a serial dilution method in Nutrient Agar (NA) culture medium at 28 °C for 2 days (Valenzuela-Aragon et al., 2018). After bacterial purification, this strain was cryopreserved, at -80 °C by using Nutrient Broth (NB) culture medium supplemented with 30% glycerol, in the Colección de Microorganismos Edáficos y Endófitos Nativos (COLMENA) (de los Santos-Villalobos et al., 2018; de los Santos-Villalobos et al., 2021). After purification, an agar plug of 0.5 cm diameter of Bipolaris sorokiniana TPQ3 mycelia was placed in the center of a Petri dish containing Potato Dextrose Agar (PDA), and strain TSO2 was inoculated at four equidistant points by triplicate around the phytopathogen and incubated for five days at 28 °C. Thus, strain TSO2 showed great biocontrol activity against B. sorokiniana TPQ3, inhibition zone of 8.0 ± 0.2 mm, through the production of extracellular diffusible compounds with strong antifungal activity, and cytotoxic activity (Villa-Rodríguez et al., 2019).

Based on these findings, strain TSO2 was sequenced to further explore potential biocontrol mechanisms. High-quality genomic DNA was extracted from a fresh culture of this strain grown in NB [24 h at 32 °C, using an orbital shaker at 121 rpm, obtaining 1×106 Colony Forming Units (CFU) mL-1], and following the protocol described by Valenzuela-Aragon et al. (2018). Then, the bacterial DNA was sequenced by the Illumina MiSeq platform, obtaining a total of 3,584,209 total pair-end reads [2 x 300 base pairs (bp)]. The quality of the obtained reads was analyzed by FastQC version 0.11.5 (Andrews, 2010). Trimmomatic version 0.32 (Bolger et al., 2014) was used to remove adapter sequences and low-quality bases, only 7.39% was dropped. Subsequently, de novo assembly was generated by SPAdes version 3.14.1 (Bankevich et al., 2012), using the “--careful” parameter for error correction in reads. The assembled contigs were ordered by Mauve contig Mover version 2.4.0 (Darling et al., 2004), using the reference genome of Bacillus cabrialesii TE3T (Genebank accession number GCA_004124315.1) (de los Santos Villalobos et al., 2019), based on the highest similarity of the 16S rRNA gene, with 100% similarity and 100% completeness (Figure 1). In addition, plasmid detection was carried out by PlasmidFinder 2.0 (Carattoli et al., 2014), where no plasmids were detected. Thus, the draft genome of strain TSO2 presented 4,242,212 bp; 43.9% G+C content; 300,069 bp N50; 5 L50; and 47 contigs (> 200bp).

The genome annotation of the studied strain was created through Rapid Annotation using Subsystem Technology (RAST) server version 2.0 (http://rast.nmpdr.org) (Overbeek et al., 2013), by the default RASTtk pipeline (Figure 2). Thus, strain TSO2 showed a total of 96 RNAs and 4,432 predicted coding DNA sequences (CDS) distributed into 328 subsystems. The most abundant subsystem was amino acids and derivatives (307 CDS), followed by carbohydrates (252 CDS). This genome showed the presence of agricultural importance genes involved in i) virulence, disease, and defense (34 CDS), which include bacitracin stress response (7 CDS), resistance to antibiotics and toxic compounds (15 CDS), and invasion and intracellular resistance (12 CDS); and ii) iron acquisition and metabolism (30 CDS), including siderophores Bacillibactin (10 CDS) and Anthrachelin (5 CDS).

Figure 1 Phylogenetic Tree. Phylogenetic relation between strain TSO2 and closely related species: Bacillus inaquosorum KCTC 13429T (AMXN01000021); B. cabrialesii TE3T (MK462260); B. spizizenii NRRL B-23049T (CP002905); B. tequilensis KCTC13622T (AYTO0100004); B. stercoris JCM 30051T (MN536904); B. subtilis NCIB 3610T (ABQL01000001); B. halotolerans ATCC 25096T (LPVF01000003); B. mojavensis RO-H-1T (JH600280); B. vallismortis DV1-F-3T (JH600273); B. nakamurai NRRL B-41091T (JH600273); B. velezensis CR-502T (AY603658); B. amyloliquefaciens DSM 7T (FN597644); B. siamensis KCTC13613T (AJVF01000043); B. atrophaeus JCM 9070T (AB021181); B. glycinifermentans GO-13T (LECW01000063); B.paralicheniformis KJ-16 T (KY694465), constructed by CLC Sequence Viewer v8.0.0 (CLC bio A/S, Qiagen, Denmark) using the neighbor-joining algorithm (based on 1000 bootstrap replications). Scale bar (0.006) represents the number of nucleotide substitutions per site. 

Figure 2 Coding sequences subsystem distribution from strain TSO2 generated through RASTtk pipeline. CDS: 4432, CDS in subsystems: 1204, and subsystems: 328. 

Besides, the circular chromosome map was generated using the CGView Server (Grant and Stothard 2008) (Figure 3). In addition, using antiSMASH 5.2.0 under default parameters (Blin et al., 2021), seven putative Biosynthetic Gene Clusters (BGC) were identified in the genome of strain TSO2 (Figure 3). For example i) Fengycin (100%), which is a lipopeptide with strong fungitoxic activity against filamentous fungi (Koumoutsi et al., 2004); ii) Bacilysin (100%), a dipeptide with an impressively broad range of antagonistic activity against fungi and bacteria (Nannan et al., 2021); iii) Subtilosin A (100%), a bacteriocin ribosomally produced with potent antimicrobial property (Ezrari et al., 2021); iv) Bacillibactin (100%), an archetypal triscatetholate siderophore known for its highest affinity for iron (Fe3+) of natural siderophores (Nithyapriya et al., 2021); v) Bacillaene (100%), a polyketide which has an important biological role associated as antibiotic weapons for Bacillus to resist other environmental microbes (Li et al., 2021); vi) Killing factor (100%), a peptide that induces the lysis of sibling no-sporulated and non-exogenous toxin resistant cells for nutrient resource, this providing the species a favorable trait in regards to sporulation, and hence competence in the niche (González-Pastor, 2010); and vii) Surfactin (86%), which is a powerful lipopeptide biosurfactant and a versatile bioactive molecule that has demonstrated antifungal, antiviral, antitumor, insecticide, antimycoplasma, and bioremediation agents in soil and water (Mulligan, 2005).

Figure 3 Circular Chromosome Map of Bacillus sp. strain TSO2, distribution of coding DNA sequences (CDS), tRNAs, rRNAs, and GC content skew (50% of the total base-pair window), as well as the Biosynthetic Gene Clusters (BGC) identified through antiSMASH. 

Bacillus sp. strain TSO2 contains a great number of Biosynthetic Gene Clusters (BGC) which support its biocontrol activity against phytopathogenic fungi. Thus, this strain needs to be further studied as a potential bioactive ingredient for the biopesticides formulation due to its high potential as a biological control agent by the secretion of antibiotics and antimicrobial peptides, and the production of siderophores.

Data availability. This draft genome sequence has been deposited in DDBJ/ENA/ GenBank under accession number JAHBMK000000000. The version described in this paper is the first version, JAHBMK000000000, under BioProject number PRJNA728132 and BioSample number SAMN19070894. Raw data is available under accession number SRR16775344.

Acknowledgments

The authors acknowledge support by the CONACyT Project 257246 “Interacción trigo x microorganismos promotores del crecimiento vegetal: identificando genes con potencial agro-biotecnológico” . We acknowledge funding from the Instituto Tecnológico de Sonora (PROFAPI_2022_0001) “Minería del genoma de Bacillus sp. TS02 para la identificación de genes asociados al control biológico de hongos fitopatógenos”Valeria Valenzuela Ruiz was supported by CONACYT fellowship 924892.

Literature cited

Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R and Solberg SØ. 2018. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Frontiers in Microbiology 9:2992. https://doi.org/10.3389/fmicb.2018.02992 [ Links ]

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. (Consulted October 2021). [ Links ]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SL, Pham s, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal Computational Biology 19(5):455-477. https://doi.org/10.1089/cmb.2012.0021 [ Links ]

Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH and Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities, Nucleic Acids Research 49(w1): w39-w45. https://doi.org/10.1093/nar/gkab335 [ Links ]

Bolger AM, Lohse M and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170 [ Links ]

Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Aarestrup FM and Hasman H. 2014. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 58(7):3895-903. https://doi.org/10.1128/AAC.02412-14 [ Links ]

Córdova-Albores LC, Zelaya-Molina LX, Ávila-Alistac N, Valenzuela-Ruíz V, Cortés-Martínez NE, Parra-Cota FI, Burgos-Canul YY, Chávez-Díaz IF, Fajardo-Franco ML, de los Santos-Villalobos S. 2020. Omics Sciences Potential on Bioprospecting of Biological Control Microbial Agents: The Case of the Mexican Agro-Biotechnology. Mexican Journal of Phytopathology 39: 1-38. https://doi.org/10.18781/r.mex.fit.2009-3. [ Links ]

Darling AC, Mau B, Blattner FR and Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14(7):1394-1403. https://doi.org/10.1101/gr.2289704 [ Links ]

de los Santos-Villalobos S, Parra-Cota FI, Herrea-Sepulveda A, Valenzuela-Aragon B y Estrada-Mora JC. 2018. Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. Revista Mexicana de Ciencias Agrícolas 9(1): 191-202. http://dx.doi.org/10.29312/remexca.v9i1.858 [ Links ]

de los Santos-Villalobos S, Díaz-Rodríguez AM, Ávila-Mascareño MF, Martínez-Vidales AD, Parra-Cota FI. 2021. COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. Diversity 13: 1-13. https://doi.org/10.3390/d13080337 [ Links ]

de los Santos-Villalobos S, Robles RI, Parra-Cota FI, Larsen J, Lozano P and Tiedje JM. 2019. Bacillus cabrialesii sp. nov., an endophytic plant growth promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. International journal of systematic and evolutionary microbiology 69(12). https://doi.org/10.1099/ijsem.0.003711 [ Links ]

Ezrari S, Mhidra O, Radouane N, Tahiri A, Polizzi G, Lazraq A, Lahlali R. 2021. Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot. Plants 10 (872): 1-25. https://doi.org/10.3390/plants10050872 [ Links ]

González-Pastor J. 2010. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiology Reviews 35: 415-424. https://doi.org/10.1111/j.1574-6976.2010.00253.x [ Links ]

Grant JR and Stothard P. 2008. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181-W184. https://doi.org/10.1093/nar/gkn179. [ Links ]

Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J and Borriss R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology 186: 1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004 [ Links ]

Li H, Han X, Dong Y, Xu S, Chen C, Feng Y, Cui Q and Li W. 2021. Bacillaenes: Decomposition Trigger Point and Biofilm Enhancement in Bacillus. ACS Omega 6: 1093−1098. https://doi.org/10.1021/acsomega.0c03389 [ Links ]

Mehta YR. 2014. Foliar and stem diseases. 133-216p. In: Mehta YR. (Ed.). Wheat diseases and their management. Springer, Cham. [ Links ]

Mulligan CN. 2005. Environmental applications for biosurfactants. Environmental Pollution 133: 183-198. https://doi.org/https://doi.org/10.1016/j.envpol.2004.06.009 [ Links ]

Nannan C, Vu HQ, Gillis A, Caulier S, N TTT and Mahillo J. 2021. Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. Journal of Biotechnology 327: 28-35. https://doi.org/10.1016/j.jbiotec.2020.12.017 [ Links ]

Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA, Luh Suriani N and Herlambang S. 2021. Production, Purification, and Characterization of Bacillibactin Siderophore of Bacillus subtilis and Its Application for Improvement in Plant Growth and Oil Content in Sesame. Sustainability 13: 5394. https://doi.org/ 10.3390/su13105394 [ Links ]

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T. et al., 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42: D206-D214. https://doi.org/10.1093/nar/gkt1226 [ Links ]

Valenzuela-Aragon B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, de Los Santos-Villalobos S. 2018. Plant assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant Soil 435:367-384. [ Links ]

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, De los Santos Villalobos S. 2018. El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicna de Fitopatología 36(1):95-130. https://doi.org/10.18781/r.mex.fit.1706-5 [ Links ]

Villa-Rodríguez E, Parra-Cota FI, Castro-Longoria E, López-Cervantes J and de los Santos-Villalobos S. 2019. Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological Control 132:135-143. https://doi.org/10.1016/j.biocontrol.2019.02.012 [ Links ]

Received: January 19, 2022; Accepted: April 07, 2022

*Corresponding author: sergio.delossantos@itson.edu.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License