SciELO - Scientific Electronic Library Online

 
vol.39 special issueAnalysis of chronic diseases associated to SARS-CoV-2 infection in children and young people in MexicoChlorine and its importance in the inactivation of bacteria, can it inactivate viruses? author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de fitopatología

On-line version ISSN 2007-8080Print version ISSN 0185-3309

Rev. mex. fitopatol vol.39 n.spe Texcoco  2021  Epub Nov 30, 2022

https://doi.org/10.18781/r.mex.fit.2021-3 

COVID-19: The Virus, Disease and Epidemiology

Can food be a risk factor in the transmission of SARS-CoV-2?

Irasema Vargas-Arispuro*  1 

Miguel Ángel Martínez-Téllez1 

Hilda Karina Sáenz-Hidalgo2 

Gustavo Mora-Aguilera3 

Nuvia Orduño-Cruz4 

Graciela Dolores Avila-Quezada4 

1 Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora, CP 83304, México;

2 CIAD, Avenida 4 sur 3828, Delicias, Chihuahua, CP. 33088, México;

3 Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Texcoco, Estado de México, CP. 56230, México;

4 Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, calle Escorza 900, Chihuahua, CP. 31000, México.


Abstract.

Although the SARS-CoV-2 virus can survive in various environments for 28 days or more, and that the virus dispersion by microdroplets in the air can be a risk of contagion, there is no evidence that food carries it. However, the authorities have recommended measures in the handling of food, to avoid the possible spread of the disease through it or its packaging. In addition, current certification models such as ISO 22000 and Good Manufacturing Practices have generated a culture of prevention and food safety also applicable to the SARS-CoV-2 risk.

Key words: COVID-19; food safety; virus; human health.

Resumen.

A pesar de que el virus SARS-CoV-2 puede sobrevivir en diversos ambientes por 28 días o más, y que la dispersión del virus por microgotas en el aire puede ser un riesgo de contagio, no hay evidencia de que los alimentos sean portadores de éste. Sin embargo, las autoridades han recomendado medidas en la manipulación de alimentos, para evitar la posible dispersión de la enfermedad a través de éstos o sus empaques. En adición, los modelos actuales de certificación como el ISO 22000 y Buenas Prácticas de Manufactura han generado una cultura de prevención e innocuidad genérica aplicable también al riesgo que representa SARS-CoV-2.

Palabras clave: COVID-19; inocuidad; virus; salud humana.

Microbiological risk in foods

Every year we face the emergence of pathogens that put plant health at risk (Avila-Quezada et al., 2018) along with human health (Chowell et al., 2009), due to their quick spread and mortality. The recent emergence caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has alarmed the global population. Among these alarms are the speculations around the risk of contagion by foods. So far, there have been no reports of a direct relation, therefore regulatory and health authorities have declared the non-existence of evidence to indicate that foods are a means of transmission of SARS-CoV-2 (CDC, 2020; OMS, 2020; FDA, 2020).

However, the known means of transmission are person-to-person contact, contaminated surfaces (Han et al., 2021), exposure to high levels of microparticles in the air and aerosols (Li et al., 2020; Roviello, 2020) which, combined in places in which foods are handled, may be a potential risk for the transmission of the virus (Han et al., 2021). This premise rises from isolated incidents in which frozen foods and their packages were found to be carriers of SARS-CoV-2, being the first, and so far, the only reported cases (SMHC, 2020). In this sense, refrigerated and frozen foods must follow adequate hygiene protocols.

Storage temperature and latency of the virus

The low temperatures in refrigerators, warehouses and transportation vehicles for food may extend the viability of SARS-CoV-2. Chin et al. (2020), Aboubakr et al. (2020) and Matson et al. (2020) measured the stability of the virus at different temperatures and found that it is stable at 4 °C. Depending on the type of surface, environment, pH, temperature and humidity, the coronaviruses may remain viable for up to 28 days (Casanova et al., 2010; Lai et al. 2005), confirming the presence of the virus in frozen foods, packages and storage settings Han et al. (2021). This suggests that before storing foods in low temperatures, they must undergo an appropriate and efficient disinfection treatment.

Person-to-food contamination

People infected with SARS-CoV-2 and are not adequately protected may release the virus when breathing, coughing, sneezing, or talking (Morawska and Milton, 2020). Therefore, when they are handling foods, they will contaminate them, along with the packages. Morawska et al. (2009) documented that the droplets released by a person can remain in the air and become a risk of exposure at distances higher than 2 m away from the infected person. At typical indoor air speeds, a 5 μm droplet will travel dozens of meters from a height of 1.5 m before landing on the ground (Matthews et al., 1989). Here is where the measures regarding covering one’s face and social distancing come into play as key factors to reduce the rate of contagion and thus reduce the risk of contamination of foods (Li et al., 2020).

Recommendations and perspectives

Although further studies are required on the stability of SARS-CoV-2 and its viral load on foods to induce infections on humans, it is recommendable for the workers involved in preparing, packaging and distributing foods to take precautions (Eslami and Jalili, 2020). The action protocols established in some food plants in several countries consist in workers taking turns for lunch breaks and avoiding speaking in this period to reduce the risk of contaminating the foods they and other employees will eat. Other measures are the procedures for the hygiene and disinfection of equipment, facilities and frequently touched surfaces. These protocols have given good results as measures of precaution and are easy to follow in other areas related to the production, packaging and storage of foods. In general terms, these measures are widely used in food packaging plants operated under strict ISO certification models and adequate manufacturing practices.

Literature cited

Aboubakr HA, Sharafeldin TA and Goyal SM. 2020. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transboundary and Emerging Diseases 0:1-17. https://doi.org/10.1111/tbed.13707 [ Links ]

Avila-Quezada GD, Esquivel JF, Silva-Rojas HV, Leyva-Mir SG, García-Avila C, Noriega-Orozco L, Rivas-Valencia P, Ojeda-Barrios D and Melgoza-Castillo A. 2018. Emerging plant diseases under a changing climate scenario: Threats to our global food supply. Emirates Journal of Food and Agriculture 30(6): 443-450. https://doi.org/10.9755/ejfa.2018.v30.i6.1715 [ Links ]

Casanova LM, Jeon S, Rutala WA, Weber DJ and Sobsey MD. 2010. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Microbiology 76(9): 2712-2717. https://doi.org/10.1128/aem.02291-09 [ Links ]

CDC. 2020. Los alimentos y la enfermedad del coronavirus 2019 (COVID-19). Centros para el control y la prevención de enfermedades (CDC). https://espanol.cdc.gov/coronavirus/2019-ncov/daily-life-coping/food-and-COVID-19.html (consulta, noviembre 2020). [ Links ]

Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H, Chan MCW, Peiris M and Poon LLM. 2020. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 1(1): e10. https://doi.org/10.1016/S2666-5247(20)30003-3 [ Links ]

Chowell G, Bertozzi SM, Colchero MA, López-Gatell H, Alpuche-Aranda C, Hernandez M and Miller MA. 2009. Severe respiratory disease concurrent with the circulation of H1N1 influenza. New England Journal of Medicine 361: 674-679. https://doi.org/10.1056/NEJMoa0904023 [ Links ]

Eslami H and Jalili M. 2020. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express 10:92. https://doi.org/10.1186/s13568-020-01028-0 [ Links ]

FDA. 2020. Inocuidad y disponibilidad de alimentos durante la pandemia del coronavirus. Food and Drugs Administration (FDA). https://www.fda.gov/consumers/articulos-en-espanol/inocuidad-y-disponibilidad-de-alimentos-durante-la-pandemia-del-coronavirus (consulta, noviembre 2020). [ Links ]

Han J, Zhang X, He S and Jia P. 2021. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environmental Chemistry Letters 19: 5-16. https://doi.org/10.1007/s10311-020-01101-x [ Links ]

Lai MYY, Cheng PKC and Lim WL. 2005. Survival of severe acute respiratory syndrome coronavirus. Clinical Infectious Diseases 41(7): e67-e71. https://doi.org/10.1086/433186 [ Links ]

Li Y, Zhang R, Zhao J and Molina MJ. 2020. Understanding transmission and intervention for the COVID-19 pandemic in the United States. Science of the Total Environment 748:141560. https://doi.org/10.1016/j.scitotenv.2020.141560 [ Links ]

Matson MJ, Yinda CK, Seifert SN, Bushmaker T, Fischer RJ, van Doremalen N, Lloyd-Smith JO and Munster VJ. 2020. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerging Infectious Diseases 26(9): 2276-2278. https://doi.org/10.3201/eid2609.202267 [ Links ]

Matthews TG, Thompson CV, Wilson DL, Hawthorne AR and Mage DT. 1989. Air velocities inside domestic environments: an important parameter in the study of indoor air quality and climate. Environmental International 15(1-6): 545-550. https://doi.org/10.1016/0160-4120(89)90074-3 [ Links ]

Morawska L and Milton DK. 2020. It is time to address airborne transmission of Coranovirus disease 2019 (COVID-19). Clinical Infectious Diseases 71(9): 2311-2313. https://doi.org/10.1093/cid/ciaa939 [ Links ]

Morawska L, Johnsona GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Chao CYH and Katoshevsk D. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science 40(3): 256-269. https://doi.org/10.1016/j.jaerosci.2008.11.002 [ Links ]

OMS. 2020. Preguntas y respuestas sobre la enfermedad por coronavirus (COVID-19). Organización mundial de la salud (OMS). https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public/q-a-coronaviruses (consulta, noviembre 2020). [ Links ]

Roviello V and Roviello GN. 2020. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environmental Chemistry Letters 19: 699-710. https://doi.org/10.1007/s10311-020-01063-0 [ Links ]

Shenzhen Municipal Health Commission (SMHC) (2020) Detection of SARS-CoV-2 on an imported chicken wing sample. https://wjw.sz.gov.cn/yqxx/conte nt/post_79981 08.html. (Consulta, diciembre 2020). [ Links ]

Received: February 02, 2021; Accepted: March 29, 2021

*Corresponding author: iris@ciad.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License