SciELO - Scientific Electronic Library Online

 
vol.61 issue6A conjecture for the algorithmic decomposition of paths over an SU(3) ADE graphDynamics of the population grating formation in erbium-doped fibers author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.6 México Nov./Dec. 2015

 

Investigación

 

MHD effects on natural convection laminar flow from a horizontal circular cylinder in presence of radiation

 

Tariq Javed, Abid Majeed and Irfan Mustafa*

 

Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000, Pakistan. *Tel.: +92 51 9019511. e-mail: irfanmustafa1983@yahoo.com

 

Received 3 June 2015;
accepted 14 September 2015

 

Abstract

In this study, the effect of magnetoliydrodynamic (MHD) on natural convection flow from a horizontal circular cylinder in the presence of radiation has been investigated. The governing boundary layer equations are converted into non-dimensional partial differential equations by using the suitable transformation and then solved numerically by employing an accurate implicit finite difference scheme known as Keller-box method. We presented the influence of emerging non-dimensional parameters namely the MHD parameter M with combination of surface heating parameter θw and radiation-conduction parameter Rd on velocity and temperature profiles, skin friction coefficient and Nusselt number through graphs and tables. It is observed that the Lorentz force reduces the velocity, skin friction coefficient and Nusselt number. Moreover temperature increases in the presence of MHD effect. The streamlines and isotherms reflect some attractive flow patterns which show that magnetic parameter M and radiation parameter Rd have deep influence on these fluid and heat flow patterns.

Keywords: MHD; radiation; horizontal circular cylinder; numerical solution.

PACS: 47.10.ad; 02.60.Cb;44.20.+b

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. J.H. Merkin, Free convection boundary layer on an isothermal horizontal circular cylinders, ASME/AIChE, Heat Transfer Conference, St. Louis, Mo., U.S.A. (1976) 9-11.         [ Links ]

2. J.H. Merkin, J., Heat Trans. 99 (1977) 453-57.         [ Links ]

3. E.M. Sparrow, and L. Lee, Int. J. Heat Mass Transf. 19 (1976) 229-236 .         [ Links ]

4. M. Luciano, and De. Socio, Int. J. Heat Mass Transf. 26 (1983) 1669-1677.         [ Links ]

5. J.H. Merkin, J. Appl. Maths. Phys. 29 (1978) 871-883.         [ Links ]

6. D.B. Ingham, Z. Angew Math. Phys. 29 (1978) 871-883.         [ Links ]

7. R. Nazar, N. Amin, and I. Pop, Heat Transfer, Proceeding of the Twelfth International Conference, (2002).         [ Links ]

8. R. Nazar, N. Amin, and I. Pop, Int. J. Appl. Mech. Eng. 7 (2002) 409-431.         [ Links ]

9. M.M. Molla, M.A. Hossain, and R.S.R. Gorla, Heat Mass Transf. 41 (2005) 594-598.         [ Links ]

10. M.M. Molla, M.A. Hossain, and M.C. Paul, Int. J. Eng. Sci. 44 (2006) 949-958.         [ Links ]

11. M.M. Molla, S.C., Paul, M.A., Hossain, Appl. Math. Model. 33 (2009) 3226-3236.         [ Links ]

12. S. Bhowmick, M.M. Molla, and M.A. Hossain, Adv. Mech. Eng., (2013) Article ID 194928 doi./10.1155/2013/194928.         [ Links ]

13. T. Javed, M.A. Siddiqui, Z. Mehmood, and I. Pop, Z. Naturforsch (2015) DOI 10.1515/zna-2015-0232.         [ Links ]

14. R.D. Cess, Int. J. Heat Mass Transf. 9 (1966) 1269-1277.         [ Links ]

15. E.H. Cheng, M.N. Ozisik, Int. J. Heat Mass Transf. 15 (1972) 1243-1252.         [ Links ]

16. V.S. Arpaci, Int. J. Heat Mass Transf. 11 (1968) 871-881.         [ Links ]

17. J. Shwartz, Int. J. Heat Mass Transf. 1 (1968) 689-697.         [ Links ]

18. M.A. Hossain, M.A. Alim, and D.A.S. Rees, Acta Mech. 129 (1998) 177-186.         [ Links ]

19. M.M. Molla, and M.A. Hossain, Int. J. Therm. Sci. 46 (2007) 926-935.         [ Links ]

20. K.A. Yih, Int. J. Heat Mass Transf. 42 (1999) 4299-4305.         [ Links ]

21. T. Akhter, and M.A. Alim, J. Mech. Eng. 39 (2008) 50-56.         [ Links ]

22. M.M. Molla, M.A. Hossain, and R.S.R. Gorla, J. Mech. Eng. Sci. 223 (2009) 1605-1614.         [ Links ]

23. M.M. Miraj, M.A. Alim, and M.A.H. Mamun, Int. Commun. Heat Mass Transf. 37 (2010) 660-665.         [ Links ]

24. M.M. Molla, S.C. Saha, M.A.I. Khan, and M.A. Hossain, Desalin. Water Treat. 30 (2011) 89-97.         [ Links ]

25. S.M. Mahfooz, M.A. Hossain, R.S.R. Gorla, Int. J. Therm. Sci. 58 (2012) 79-91.         [ Links ]

26. Z. Abbas, A. Majeed, and T. Javed, Heat transf. Res. 44 (2013) 703-718.         [ Links ]

27. S. Karthikeyan, M. Bhuvaneswari, S. Rajan, and S. Sivasankaran, App. Math. Comp. Intel. 2 (2013) 75-83.         [ Links ]

28. S. Siddiqa, M.A. Hossain, S.C. Saha, Int. J. Therm. Sci. 84 (2014) 143-150.         [ Links ]

29. T. Javed, I. Mustafa, and H. Ahmad, Therm. Sci. (2015) doi:10.2298/TSCI140926027J.         [ Links ]

30. T. Cebeci, and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, (New York, Springer, 1988).         [ Links ]

31. Howell, J.R., Siegel, R., and Menguc, M.P., Thermal Radiation Heat Transfer, 5th edition, Taylor and Francis, (New York, 2010).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License