SciELO - Scientific Electronic Library Online

 
vol.61 issue11-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from x-ray powder diffraction using simulated annealing author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.1 México Jan./Feb. 2015

 

Investigación

 

Perturbation method applied to a basic diode circuit

 

H. Vázquez-Leala *, Y. Khanb, G. Fernández-Anayac, U. Filobello-Ninoa, V.M. Jiménez-Fernándeza, A. Herrera-Mayd, A. Díaz-Sáncheze, A. Marín-Hernándezf and J. Huerta-Chuag

 

a Electronic Instrumentation School, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N, Xalapa 91000, Veracruz, México, * e-mail: hvazquez@uv.mx

b Department of Mathematics, Zhejiang University, Hangzhou 310027, China.

c Departamento de Física y Matemáticas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, 01219 D.F., México.

d Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Rio 94292, Veracruz, México.

e National Institute for Astrophysics, Optics and Electronics, Luis Enrique Erro #1, Sta. María Tonantzintla 72840, Puebla, México.

f Department of Artificial Intelligence, Universidad Veracruzana, Sebastián Camacho No. 5, Xalapa 91000, Veracruz, México.

g Facultad de Ingeniería Civil, Universidad Veracruzana, Venustiano Carranza S/N, Col. Revolución, C.P. 93390, Poza Rica, Veracruz, México.

 

Received 3 December 2013;
accepted 11 December 2014

 

Abstract

Because of the exponential characteristic of silicon diodes, exact solutions cannot be established when operating point and transient analysis are computed. To overcome that problem, the present work proposes a perturbation method which allows obtaining approximated analytic expressions of diode-based circuits. Simulation results show that numerical solutions obtained by using the proposed method are similar to those reported in literature, with the advantage of not requiring a user-selected arbitrary expansion point. Additionally, the method does not use the Lambert function W, reducing the proposed solution complexity, which makes it suitable for engineering applications.

Keywords: Circuit analysis; nonlinear circuits perturbation method.

 

PACS: 07.50.Ek, 84.30.-r, 02.70.-c, 05.45.-a

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors wish to acknowledge to Rogelio Alejandro Callejas-Molina and Roberto Ruiz-Gomez for their technical support. Besides, this work has been supported by CONACYT Mexico research project CB-2010-01 #157024.

 

References

1. H. Vazquez-Leal et al., IEICE Electronics Express, 9 (2012) 522-530.         [ Links ]

2. T. C. Banwell, Fundamental Theory and Applications 47 (2000) 1621-1633.         [ Links ]

3. V. Marinca and N. Herisanu, Nonlinear dynamical systems in engineering: Some approximate approaches. (Springer, 2011).         [ Links ]

4. E. Di Costanzo and A. Marasco, Computers and Mathematics with Applications 63 (2012) 60-67.         [ Links ]

5. G.M. Abd EL-Latif, Applied Mathematics and Computation 152 (2004) 821-836.         [ Links ]

6. A. Doroudi and A. Rezaeian Asl, International Journal of Mass Spectrometry 309 (2012) 104-108.         [ Links ]

7. R.R. Pušenjak, Journal of Sound and Vibration, 314 (2008) 194-216.         [ Links ]

8. Hong-Mei Liu, Solitons and Fractals 23 (2005) 577-579.         [ Links ]

9. P. Amore and Alfredo Aranda, Journal of Sound and Vibration 283 (2005) 1115-1136.         [ Links ]

10. U. Filobello-Nino et al., Miskolc Mathematical Notes, 14 (2013) 89-101.         [ Links ]

11 . U. Filobello-Nino et al., Asian Journal of Mathematics & Statistics 6 (2013) 76-82.         [ Links ]

12. Yuan Tian, Kaibiao Sun, and Lansun Chen, Mathematics and Computers in Simulation 82 (2011) 318-331.         [ Links ]

13. V. Hariharan, J. Vasi, and V. Ramgopal Rao, Solid- State Electronics, 53 (2009) 218-224.         [ Links ]

14. D.C. Allan, Journal of Non-Crystalline Solids 358 (2012) 440­442.         [ Links ]

15. D. Brkič, Applied Mathematics Letters 24 (2011) 1379-1383.         [ Links ]

16. W. Jung and M. Guziewicz, Materials Science and Engineering: B 165 (2009) 57-59.         [ Links ]

17. Z. You, R.R. Huilgol, and E. Mitsoulis, International Journal of Engineering Science 46 (2008) 799-808.         [ Links ]

18. J. Ding and R. Radhakrishnan, Solar Energy Materials and Solar Cells 92 (2008) 1566-1569.         [ Links ]

19. F. Ghani and M. Duke, Solar Energy 85 (2011) 2386-2394.         [ Links ]

20. S.M. Disney and Roger D.H. Warburton, International Journal of Production Economics 140 (2011) 756-764.         [ Links ]

21. D. Veberič, Computer Physics Communications 183 (2012) 2622-2628.         [ Links ]

22. Marko Goli¡cnik. On the lambert w function and its utility in biochemical kinetics. Biochemical Engineering Journal, 63 (2012) 116-123.         [ Links ]

23. C. Sánchez-Lopez, F.V. Fernández, E. Tlelo-Cuautle, and S. X-D. Tan, IEEE Transactions on Circuits and Systems I: Regular Papers, 58 (2011) 1382-1395.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License