SciELO - Scientific Electronic Library Online

 
vol.61 número1Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc's1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from x-ray powder diffraction using simulated annealing índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.61 no.1 México ene./feb. 2015

 

Investigación

 

Investigation of electrical RC circuit within the framework of fractional calculus

 

H. Ertika, A.E. Çalikb, H. Şirinc, M. Şen and B. Öderd

 

a Department of Mathematics Education, Alanya Faculty of Education, Akdeniz University, Alanya, Antalya, 07425, TURKEY.

b Department of Physics, Faculty of Arts and Sciences, Dumlupinar University Kütahya, 43100, TURKEY, e-mail: aengin.calik@dpu.edu.tr.

c Department of Physics, Faculty of Science, Ege University Bornova, Ízmir, 35100, TURKEY.

dDepartment of Physics, Institute of Science and Technology, Dumlupinar University Kütahya, 43100, TURKEY.

 

Received 20 October 2014;
accepted 11 December 2014

 

Abstract

In this paper, charging and discharging processes of different capacitors in electrical RC circuit are considered theoretically and experimentally. The non-local behaviors in these processes, arising from the time fractality, are investigated via fractional calculus. In this context, the time fractional differential equation related to electrical RC circuit is proposed by making use of Caputo fractional derivative. The resulting solution exhibits a feature in between power law and exponential law forms, and is obtained in terms of Mittag-Leffler function which describes physical systems with memory. The order of fractional derivative characterizes the fractality of time and being considered in the interval 0 < α ≤ 1. The traditional conclusions are recovered for α = 1, where time becomes homogenous and system has Markovian nature. By using time fractional approach, the discrepancies between the experimentally measured data and the theoretical calculations have been removed.

Keywords: RC circuit; fractional calculus; Caputo fractional derivative; Mittag-Leffler function; Planck units.

 

PACS: 02.30.Hq; 07.50.Ek

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. R.A. Serway, R. Beichner, Physics for Scientists and Engineers with Modern Physics. (Saunders College Publishing, Fort Worth, 2000).         [ Links ]

2. F. Riewe, Phys. Rev. E53 (1996) 1890.         [ Links ]

3. L.H. Yu, C.P. Su, Phys. Rev. A 49 (1994) 592.         [ Links ]

4. I. Podlubny, Fractional Differantial Equations, (Academic Press, San Diego, 1999).         [ Links ]

5. I. Podlubny, I. Petras, B.M. Vinagre, et al., Nonlinear Dynamics 29 (2002) 281.         [ Links ]

6. D. Sierociuk, I. Podlubny, I. Petras, IEEE Transactions on Control Systems Technology 21 (2013) 459.         [ Links ]

7. A.A. Rousan, N.Y. Ayoub, F.Y. Alzoubi, et al., Fractional Calculus & Applied Analysis 9 (2006) 33.         [ Links ]

8. T. Kaczorek, Int. J. Appl. Mat. Comput. Sci. 21 (2011) 379.         [ Links ]

9. T. Kaczorek, Acta Mechanica et Automatica 5 (2011) 42.         [ Links ]

10. I.S. Jesus, J.A.T. Machado, Mathematical Problems in Engineering 2012 (2012).         [ Links ]

11. B. Maundy, A. Elwakil, S. Gift, Analog Integr. Circ. Sig. Process 62 (2009) 99.         [ Links ]

12. A. Obeidat, M. Gharaibeh, M. Al-Ali, etal., Fractional Calculus & Applied Analysis 14 (2011) 247.         [ Links ]

13. S. Kumar, Z. Naturforsch 68a (2013) 777.         [ Links ]

14. S. Westerlund, L. Ekstam, IEEE Transactions on Dielectrics and Electrical Insulation 1 (1994) 826.         [ Links ]

15. B.T. Krishna, K.V.V.S. Reddy, Journal of Electrical Engineering 8 (2008)41.         [ Links ]

16. V. Uchaikin, R. Sibatov, D. Uchaikin, Phys. Scr. 2009 (2009).         [ Links ]

17. J.F. Gomez-Aguilar, J.J. Rosales-Garcia, et al., Revista Mexicana de Fisica 58 (2012) 348.         [ Links ]

18. J.F. Gomez-Aguilar, D. Baleanu, Z. Naturforsch 69a (2014) 1.         [ Links ]

19. F. Gomez, J. Rosales, M. Guia, Central European Journal of Physics 11 (2013) 1361.         [ Links ]

20. J.F. Gomez-Aguilar, J. Rosales-Garcia, et al., Ingenieria Investigacion y Tecnologia 15 (2014) 311.         [ Links ]

21. J.F. Gomez-Aguilar, R. Razo-Hernandez, D. Granados- Lieberman, Rev. Mex. Fis. 60 (2014) 32.         [ Links ]

22. M. Guia, J.F. Gomez, J.J. Rosales, Central European Journal of Physics 11 (2013) 1366.         [ Links ]

23. K.B. Oldham, J. Spanier, The Fractional Calculus, (Academic Press, San Diego, 1974).         [ Links ]

24. K.S. Miller, B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, (John Wiley and Sons Inc., New York, 1993).         [ Links ]

25. R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000).         [ Links ]

26. A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, (Springer Verlag: New York, 1997).         [ Links ]

27. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012).         [ Links ]

28. D. Cafagna, Fractional Calculus, A mathematical tool from past for present engineers, (IEEE Industrial Electronics Magazine, Summer, 35-40, 2007).         [ Links ]

29. M. Naber, J. Math. Phys. 45 (2004) 3339.         [ Links ]

30. M.R. Ward, Electrical Engineering Science, (McGraw-Hill, New York, 1971).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons