SciELO - Scientific Electronic Library Online

 
vol.61 issue1Invarianza de las ecuaciones de movimiento bajo transformaciones de escala espacio-temporales en la dinámica de Newton modificada (MOND)Investigation of electrical RC circuit within the framework of fractional calculus author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.61 n.1 México Jan./Feb. 2015

 

Investigación

 

Análisis de materiales catódicos de estructura perovskita para celdas de combustible de óxido sólido, sofc's

 

J. Alvarado-Floresa J. Espino-Valenciab y L. Ávalos-Rodríguezc

 

a Universidad Michoacana de San Nicolás de Hidalgo, Posgrado de la Facultad de Ingeniería Química, Santiago Tapia 403, Morelia, Michoacán, México.

b Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Ingeniería Química, Santiago Tapia 403, Morelia, Michoacán, México.

c Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Económicas y Empresariales, Santiago Tapia 403, Morelia, Michoacán, México.

 

Received 3 October 2014;
accepted 2 December 2014

 

Resumen

Las celdas de combustible convierten directa y eficientemente la energía química de un combustible en energía eléctrica. De los diversos tipos de celdas de combustible, las de óxido solido (SOFC), combinan las ventajas en generación de energía ambientalmente benigna con la flexibilidad del combustible. Sin embargo, la necesidad de elevadas temperaturas de funcionamiento (800-1000°C) se ha traducido en altos costos y grandes retos en relación a la compatibilidad para los materiales catódicos. Como consecuencia, se han realizado importantes esfuerzos en el desarrollo de celdas SOFC de temperatura intermedia (500-700°C). Un obstáculo clave para su funcionamiento en este rango de temperatura, es la limitada actividad de los tradicionales materiales catódicos para la reducción electroquímica de oxígeno. En este artículo, se analiza el progreso de los últimos arios en cátodos para celdas SOFC de estructura perovskita (ABO3), mas eficientes que el tradicionalmente usado La1-xSrxMnO3- δ (LSM) o (La,Sr)CoO3. Tal es el caso de los conductores mixtos (MIEC) de estructura doble perovskita (AA'B2O5+δ) utilizando diversos elementos de dopaje como La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, Dy, Mn, entre otros, que puedan mejorar el rendimiento operacional de los materiales catódicos existentes, promoviendo el desarrollo de diseños optimizados de celdas SOFC de temperatura intermedia.

Palabras clave: Cátodos de estructura perovskita; conductividad eléctrica; celda de combustible de óxido sólido (SOFC).

 

Abstract

Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (SOFC), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000°C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature SOFC (500 - 700°C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction of oxygen. In this article, the progress of recent years is discussed in cathodes for SOFC perovskite structure (ABO3), more efficient than the traditionally used La1-xSrxMnO3- δ (LSM) or (La,Sr)CoO3. Such is the case of mixed conductors (MIEC) double perovskite structure (AA'B2O5+δ) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature SOFC designs.

Keywords: Perovskite cathode structure; electrical conductivity; solid oxide fuel cell (SOFC).

 

PACS: 82.47.Ed; 81.20.Fw; 73.40.Vz

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Bibliografía

1. A. Casonova. A consortium approach to commercialized Westinghouse solid oxide fuel cell technology. Journal of Power Sources 71 (1998)65-70.         [ Links ]

2. K. Kordesch y G. Simader. Fuel cells y their applications. (VCH, Germany 1996).         [ Links ]

3. B. Boukamp. Fuel cells: The amazing perovskite anode. Nature Materials 2 (2003) 294-296.         [ Links ]

4. Han P. Novel oxide fuel cells operating at 600-800°C, An EPRI/GRI Fuel Cell Workshop on Fuel Cell Technology Research and Development, (New Orleans, LA. 1993).         [ Links ]

5. R. DeSouza. Ionic transport in acceptor doped perovskites. Thesis, (University of London 1996).         [ Links ]

6. J. Piao, K. Sun, N. Zhang y S. Xu. A study of process parameters of LSM and LSM-YSZ composite cathode films prepared by screen-printing. Journal of Power Sources 175 (2008) 288-295.         [ Links ]

7. W. Wang y S. Jiang, A mechanistic study on the activation process of (La,Sr)MnO3 electrodes of solid oxide fuel cells. Solid State Ionics 177 (2006) 1361-1369.         [ Links ]

8. T. Tsai y S.A. Barnetr, Proceedings of 5th International Symposium on Solid Oxide Fuel Cells, Aachen, Germany 18 (1997) 368.         [ Links ]

9. Y. Kim y A Manthiram. Layered LnBaCo2-xCuxO5+δ (0 ≤ x ≤1.0) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of the Electrochemistry Society 158 (2011) B276-82.         [ Links ]

10. X. Meng, S. Lu, Y. Ji, T. Wei y Y. Zhang. Characterization of Pri1-xSrxCo0.8Feo0.2O3-δ (0.2 ≤ x ≤0.6) cathode materials for intermediate- temperature solid oxide fuel cells. Journal of Power Sources 183 (2008) 581-585.         [ Links ]

11 . J. Zhao, L. Chen y M. Yongchang. Synthesis and characterization of calcium and manganese-doped rare earth oxide. Journal of Rare Earths 29 (2011) 1066-1069.         [ Links ]

12. Y. Takeda, Y. Sakaki, T. Ichikawa, N. Imanishi, O. Yamamoto, M. Mori, N. Mori y T. Abe: Solid State Ionics 72 (1994) 257-264.         [ Links ]

13. R. De Souza, M. Islam y E. Ivers. Formation and migration of cation defects in the perovskite oxide LaMnO3. Journal of Materials Chemistry 9 (1999) 1621-1627.         [ Links ]

14. C. Brugnoni, U. Ducari y M. Scagliotti. SOFC cathode/electrolyte interface. Part I: Reactivity between La0.85Sr0.15MnO3 and ZrO2- Y2O3. Solid State Ionics 76 (1995) 177-182.         [ Links ]

15. Y. Jiang, S. Wang, Y, Zhang, J. Yany W. Li. Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode. Solid State Ionics 110 (1998) 111-119.         [ Links ]

16. J. Herie, A. McEvoy y K. Thampi. A study on the La1-xSrxMnO3 oxygen cathode. Electrochemical Acta 41 (1996) 1447-1454.         [ Links ]

17. Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio y Y. Esaki. Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid Stare Ionics 118 (1999) 187-194.         [ Links ]

18. S. Aruna, M. Muthuraman y K. Patil. Studies on strontium substituted rare earth manganites. Solid State Ionics 120 (1999) 275-280.         [ Links ]

19. T. Wen, H. Tu, Z. Xu y O. Yamamoto. A study of (Pr, Nd, Sm)1?xSrxMnO3 cathode materials for solid oxide fuel cell. Solid State Ionics 121 (1999) 25-30.         [ Links ]

20. G. Kostogloudis y C. Ftikos. Characterization of Nd1-xSrxMnO3±δ SOFC cathode materials. Journal of the European Ceramic Society 19 (1999) 497-505.         [ Links ]

21. G. Kostogloudis, N. Vasihkos y C. Ftiko. Preparation and characterization of Pr1-xSrxMnO3±δ (x = 0, 0.15, 0.3, 0.4, 0.5) as a potential SOFC cathode material operating at intermediate temperatures (500-700°C). Journal of the European Ceramic Society 17 (1997) 1513-1521.         [ Links ]

22. H. Rim, S. Jeung, E. Jung y J. Lee. Characteristics of Pr1-xMxMnO3 (M = Ca, Sr) as cathode material in solid oxide fuel cells Materials Chemistry & Physics 52 (1998) 54-59.         [ Links ]

23. T. Ishihara, T. Kudo, H. Matsuda y Y. Takita. Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. Journal of The Electrochemical Society 142 (1995) 1519-1524.         [ Links ]

24. T. Hibino, S. Wang, S. Kakimoto y M. Sano. One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode. Solid State Ionics 127 (2000) 89-98.         [ Links ]

25. C. Hatchwell, N. Sammes, I. Brown y K. Kendall. Current collectors for a novel tubular design of solid oxide fuel cell. Journal of Power Sources 77 (1999) 64-68.         [ Links ]

26. F.W. Poulsen. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)yMnO3±δ. Solid State Ionics 129 (2000) 145-162.         [ Links ]

27. N. Maffei y A. Kuriakose. Performance of planar single cell lanthanum gallate based solid oxide fuel cells. Journal of Power Sources 75 (1998) 162-166.         [ Links ]

28. J. Lane, H. Fox, B. Steele y J.A. Kilner: British Ceramic Proceedings 52 (Electroceramics) (1994) 263-271.         [ Links ]

29. B. Steele. Survey of materials selection for ceramic fuel cells II. Cathodes and anodes Solid State Ionics 86 (1996) 1223-1234.         [ Links ]

30. B. Steele. Interfacial reactions associated with ceramic ion transport membranes. Solid State Ionics 75 (1995) 157-165.         [ Links ]

31. D. Lybye, F. Poulsen y M. Mogensen. Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites. Solid State Ionics 128 (2000) 91-103.         [ Links ]

32. M. Hrovat, S, Bernik, D. Kuscer, J. Hole y D. Kolar. Evaluation of the characteristics of La (Co1-xAlx)O3 as possible SOFC cathodes. Journal of Materials Science Letters 17 (1998) 1957-1959.         [ Links ]

33. P. Anderson, F. Marques, D. Sinclair y A. West: British Ceramic Proceedings 60 (1999) 59-60.         [ Links ]

34. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi y Y. Takita. Intermediate Temperature Solid Oxide Fuel Cells Using a New LaGaO3 Based Oxide Ion Conductor. Journal of the Electrochemical Society 145 (1998)3177-3183.         [ Links ]

35. R. Chiba, F. Yoshimura y Y. Sakurai. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124 (1999) 281-288.         [ Links ]

36. I. Kaus y H. Anderson. Electrical and thermal properties of La0.2Sr0.8Cu0.1Fe0.9O3-δ and La0.2Sr0.8Cu0.2Fe0.8O3-δ. Solid State Ionics 129 (2000) 189-200.         [ Links ]

37. V. Kharton, A. Kovalevsky, V. Tikhonovich, E. Naumovich y A. Viskup. Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): II. Oxygen permeation through Cr- and Ni-substituted LaCoO3. Solid State Ionics 110 (1998) 53-60.         [ Links ]

38. V. Kharton, A. Viskup, D. Bochkov, E. Naumovich y O. Reut. Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni): III. Diffusion of oxygen through LaCoi-x-yFexNiyO3±δ ceramics. Solid State Ionics 110 (1998)61-68.         [ Links ]

39. J. Holc, D. Kuscer, M. Hrovat, S. Bernik y D. Kolar. Electrical and microstructural characterisation of (La0.8Sr0.2)(Fe1-xAlx)O3 and (La0.8Sr0.2)(Mn1-xAlx)O3 as possible SOFC cathode materials. Solid State Ionics 95 (1997) 259-268.         [ Links ]

40. W. Sun, Z. Shi, S. Fang, L. Yan, Z. Zhu y W. Liu. A high performance BaZr0.1Ce0.7 Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δCe0.8Sm0.2O2-δ composite cathode. International Journal of Hydrogen Energy 15 (2010) 7925-7929.         [ Links ]

41. W. Sun, L. Yan, B. Lin, S. Zhang y W. Liu. High performance proton-conducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3-δ-Ce0.8Sm0.2O2-δ composite cathode. Journal of Power Sources 195 (2010) 3155-3158.         [ Links ]

42. A. Petric, P Huang y F Tietz. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135 (2000) 719-725.         [ Links ]

43. P. Ried, P. Holtappels, A. Wichser, A. Ulrich y T. Graule. Synthesis and characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Journal of Electrochemical Society 155 (2008) B1029-B1035.         [ Links ]

44. Z Shao y S.Haile. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431 (2004) 170-173.         [ Links ]

45. L. Tai, M. Nasrallah, H. Anderson, D. Sparlin y S. Sehlin. Structure and electrical properties of La1-xSrxCoi-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3 Solid State Ionics 76 (1995) 273-283.         [ Links ]

46. S. Park, S. Choi, J. Shin y G. Kim. Electrochemical investigation of strontium doping effect on high performance Pr1-xSrxCoO3-δ (x = 0.1, 0.3, 0.5, and 0.7) cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 210 (2012) 172-177.         [ Links ]

47. C. Xia, W. Rauch, F. Chen y M. Liu. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149 (2002) 11-19.         [ Links ]

48. J. Zou, J. Park, H. Yoon, N. Sammers y J. Chung. Effects of transition metal ion dopants on the performance of Ca2.9Bi0.1Co4O9-δ cathode. Journal of Alloys and Compounds 558 (2013) 188-194.         [ Links ]

49. Z. Liu, L. Cheng y M. Han. A-site deficient Ba1-xCo0.7Fe0.2Ni0.1O3-δ cathode for intermediate temperature SOFC. Journal of Power Sources 196 (2011) 868-871.         [ Links ]

50. Q. Xu, D. Huang, F. Zhang, W. Chen, M. Chen y H. Liu. Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4CO0.8Fe0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathodes. Journal of Alloys and Compounds 454 (2008) 460-465.         [ Links ]

51. F. Wang, Q. Zhou, T. He, G. Li y H. Ding. Novel SrCo1-yNbyO3 cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources. 195 (2010) 3772-3778.         [ Links ]

52. H. Choi, A. Fuller, J. Davis, Ch. Wielgus, S. Ozkan. Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: Effect of dopant concentration. Applied Catalysis B: Environmental 127 (2012) 336-341.         [ Links ]

53. Q. Zhou, T. Wei, Y. Shi, S. Guo, Y. Li, J. Su, H. Ren y Y. Zhu. Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite as cathode for solid oxide fuel cells. Current Applied Physics 12 (2012) 1092-1095.         [ Links ]

54. B. Qu, W. Long, F. Jin, S. Wang y T. He. SrCo0.7Fe0.2Ta0.1O3-δ perovskite as a cathode material for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy 39 (2014) 12074-12082.         [ Links ]

55 . H. Ding, B. Lin, X. Liu y G. Meng. High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite cathode. Electrochemistry Communicatios 10 (2008) 1388-1391.         [ Links ]

56. C. Xia, W. Rauch, F. Chen y M. Liu. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics. 149 (2002) 11-19.         [ Links ]

57. S. Simner, J. Bonnett, N. Canfield, K. Meinhardt, J. Shelton, V. Sprenkle y J. Stevenson. Development of lanthanum ferrite SOFC cathodes. Journal of Power Sources 113 (2003) 1-10.         [ Links ]

58. Y. Chen, Y. Wei, X. Liu, G. Meng. Chinese Journal of Inorganic Chemistry 22 (2006) 31-36.         [ Links ]

59. M. Asamoto, H. Yamaura y H. Yahiro. Influence of microstructure of perovskite-type oxide cathodes on electrochemical performances of proton-conducting solid oxide fuel cells operated at low temperature. Journal of Power Sources 196 (2011) 1136-1140.         [ Links ]

60. Q. Zhou, L. Xu, Y. Guo, D. Jia, Y. Li y W. Wei. La0.6Sr0.4Fe0.8Cu0.2O3-δ perovskite oxide as cathode for IT-SOFC. International Journal of Hydrogen Energy 37 (2012) 11963-11968.         [ Links ]

61. V. Sadykov, P. Kalinin y A. Arzhannikov. Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures. Journal of Power Sources 196 (2011) 7104-7109.         [ Links ]

62. W. Zhou, Z. Shao, R. Ran, W. Jin y N. Xu. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600°C. Chemical Communications 44 (2008) 5791-5793.         [ Links ]

63. T. Yu, X. Mao y G. Ma. Performance of cobalt-free perovskite La0.6Sr0.4Fe1-xNbxO3-δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds 608 (2014) 30-34.         [ Links ]

64. S. Simner, J. Bonnett, N. Canfield, K. Meinhardt, V. Sprenkle y J. Stevenson. Optimized Lanthanum Ferrite Based Cathodes for Anode-Supported SOFCs. Electrochemical Solid State Letters 5 (2002) A173- A179.         [ Links ]

65. H. Ding, B. Lin, X. Liu y G. Meng. High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite cathode. Electrochemistry Communicatios 10 (2008) 1388-1391.         [ Links ]

66. H. Ding y X. Xue. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode. Journal of Power Sources 195 (2010) 7038-7041.         [ Links ]

67. H. Ding y X. Xue. A novel cobalt-free layered GdBaFe2O5+δ cathode for proton conducting solid oxide fuel cells. Journal of Power Sources 195 (2010) 4139-4142.         [ Links ]

68. K. Watenabe, M. Yuasa, T. Kida, Y. Teraoka, N. Yamazoe y K. Shimanoe. High-Performance Oxygen- Permeable Membranes with an Asymmetric Structure Using Ba0.95La0.05FeO3-δ Perovskite-Type Oxide. Advanced Materials 22 (2010) 2367-2370.         [ Links ]

69. T. Kida, S. Ninomiya, K. Watenabe, N. Yamazoe y K. Shimanoe. High Oxygen Permeation in Ba0.95La0.05FeO3-δ Membranes with Surface Modification. ACS Applied Materials Interfaces 10 (2010) 2849-2853.         [ Links ]

70. L. Yan, H. Ding, Z. Zhiwen y X. Xue. Investigation of cobalt-free perovskite Ba0.95La0.05FeO3-δ as a cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources. 196 (2011)9352-9355.         [ Links ]

71. Z. Ding, Z. Yang, D. Zhao, X. Deng y G. Ma. A cobalt-free perovskite-type La0.6Sr0.4Fe0.9Cr0.1O3-δ cathode for proton-conducting intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds 550 (2013) 204-208.         [ Links ]

72. A. Chang, S. Skinner y J. Kilner, Electrical properties of GdBaCo2 O5+x for ITSOFC applications. Solid State Ionics 177 (2006) 2009-2011.         [ Links ]

73. G. Kim, S. Wang, A. Jacobson, L. Reimus, P. Brodersen y C. Mims. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry17 (2007) 2500-2505.         [ Links ]

74. A. Taskin, A. Lavrov y Y. Ando, Achieving fast oxygen diffusion in perovskites by cation ordering. Applied Physics Letters 86 (2005) 091910-091910-3.         [ Links ]

75. Z. Yang, Z. Ding, J. Xiao, H. Zhang, G. Ma y Z. Zhou . A novel cobalt-free layered perovskite-type GdBaFeNiO5-δ cathode material for proton-conducting intermediate temperature solid oxide fuel cells. Journal of Power Sources 220 (2012) 15-19.         [ Links ]

76. T. Yu, T. Yu, X. Mao y G. Ma. A novel cobalt-free perovskite La0.6Sr0.4Fe0.9Mo0.1O3-δ cathode for intermediate temperature solid oxide fuel cells. Ceramics International 40 (2014) 13747-13751.         [ Links ]

77. S. Shahgaldi, Z. Yaakob, D. Jafar, M. Ahmadrezaei y W. Wan. Synthesis and characterization of cobalt free Ba0.5Sr0.5Fe0.8Cu0.2O3-δ perovskite oxide cathode nanofibers. Journal of Alloys and Compounds 509 (2011) 9005-9009.         [ Links ]

78. S. Huang, G. Wang, X. Sun, C. Lei y L. Chunchang. Cobalt- free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3-δ as a cathode material for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds 543 (2012) 26-30.         [ Links ]

79. Y. Ling, X. Zhang, Z. Wang, S. Wang, L. Zhao, X. Liu y B. Lin. Potentiality of cobalt-free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3-δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy 38 (2013) 14323-14328.         [ Links ]

80. J. Lu, Y. Mei y Z. Feng. Preparation and characterization of new cobalt-free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3-δ for IT- SOFC. International Journal of Hydrogen Energy 38 (2013) 10527-10533.         [ Links ]

81. J. Hodges, S. Short, J. Jorgensen, X. Xiong, B. Dabrowski, S. Mini y C. Kimball. Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series SrnFenO3n-1 (n = 2, 4, 8, and ∞), and the Relationship to Electronic and Magnetic Properties. Journal of Solid State Chemstry 151 (2000) 190-209.         [ Links ]

82. O. Savinskaya, A. Nemudry y N. Lyakhov. Synthesis and properties of SrFe1-xMxO3-z (M = Mo, W) perovskites. Inorganic Materials 43 (2007) 1350-1360.         [ Links ]

83. J. Waerenborgh, D. Rojas, A. Shaula, G.Mather, M. Patrakeev, V. Kharton y J. Frade. Phase formation and iron oxidation states in SrFe(Al)O3-δ, perovskites. Materials Letters 59 (2005) 1644-1648.         [ Links ]

84. M. Patrakeev, V. Kharton, Yu Bakhteeva, A. Shaula, I. Leonidov, V. Kozhevnikov, E Naumovich, A. Yaremchenko, y F. Marques. Oxygen nonstoichiometry and mixed conductivity of SrFe1-xMxO3-δ (M=Al, Ga): Effects of B-site doping. Solid State Science 8 (2006) 476-487.         [ Links ]

85. M. Patrakeev, A. Markov, I. Leonidov, V. Kozhevnikov y V. Kharton. Ion and electron conduction in SrFe1-xScxO3-δ Solid State Ionics 177 (2006) 1757-1760.         [ Links ]

86. P. Anikina, A. Markov, M. Patrakeev, I. Leonidov y V. Kozhevnikov, High-temperature transport and stability of SrFe1-xNbxO3-δ. Solid State Science. 11 (2009) 1156-1162.         [ Links ]

87. Q. Zhou, L. Zhang y T. He. Cobalt-free cathode material SrFe0.9Nb0.1O3-δ, for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications 12 (2010) 285-287.         [ Links ]

88. M. Li, M. Ni, F. Su y Ch. Xia. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes. Journal of Power Sources 260 (2014) 197-204.         [ Links ]

89. Y. Niu, W. Zhou, J. Sunarso, L. Ge, Z. Zhu y Z. Shao. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry. 20 (2010) 9619-9622.         [ Links ]

90. Y. Ling, X. Zhang, S. Wang y X. Liu. A cobalt-free SrFe0.9Sb0.1O3-δ cathode material for proton-conducting solid oxide fuel cells with stable BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte. Journal of Power Sources 195 (2010) 7042-7045.         [ Links ]

91. Y. Niu, J. Sunarso, F. Liang, W. Zhou, Z. Zhu, Z. Shao, A Comparative Study of Oxygen Reduction Reaction on Bi and La Doped SrFeO3-δ, Perovskite Cathodes. Journal of the Electrochemical Society 158 (2011) B132-B138.         [ Links ]

92. G. Xiao, Q. Liu, S. Wang, V. Komvokis, M. Amiridisb, A. Heyden, S. Ma y F. Chen. Synthesis and characterization of Mo-doped SrFeO3-δ, as cathode materials for solid oxide fuel cells. Journal of Power Sources 202 (2012) 63-69.         [ Links ]

93. S. Jiang, W. Zhou, Y. Niu, Z. Zhu, Z. Sha. ChemSusChem. 5 (2012) 2013-2023.         [ Links ]

94. W. Jung y H. Tuller. Investigation of Cathode Behavior of Model Thin-Film SrTi1-xFexO3-δ (x = 0.35 and 0.5) Mixed Ionic-Electronic Conducting Electrodes. Journal of the Electrochemical Society 155 (2008) B1194-B1201.         [ Links ]

95. W. Jung y H.L. Tuller, Impedance study of SrTi1-xFexO3-δ (x = 0. 05 to 0.80) mixed ionic-electronic conducting model cathode. Solid State Ionics 180 (2009) 843-847.         [ Links ]

96. X. Yu, W. Long, F. Jin y T. He. Cobalt-free perovskite cathode materials SrFe1-xTixO3-δand performance optimization for intermediate-temperature solid oxide fuel cells. Electrochimica Acta 123 (2014) 426-434.         [ Links ]

97. J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. Grenier y M. Marrony, Perovskite and A2MO4 type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimica Acta 55 (2010) 5847-5853.         [ Links ]

98. H. Tu, Y. Takeda, N. Imanishi y O. Yamamoto, Ln1-xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells Solid State Ionics 100 (1997) 283-288.         [ Links ]

99. M. Godickemeier, K. Sasaki, L. Gauckler y I. Reiss, Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid State Ionics 86 (1996) 691-701.         [ Links ]

100. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura y N. Yamazoe. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48 (1991) 207-212.         [ Links ]

101. S. Adler. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes. Solid State lonics 111 (1998) 125-134.         [ Links ]

102. A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao y K. Kikuchi. Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure. Journal of Solid State Chemistry 142 (1999) 374-388.         [ Links ]

103. S. Charojrochkul, K. Choy y B. Steele, Cathode/electrolyte systems for solid oxide fuel cells fabricated using flame assisted vapour deposition technique. Solid State Ionics 121 (1999) 107-113.         [ Links ]

104. Y. Takeda, H. Ueno, N. Imanishi, O. Yamamoto, N. Sammes y M. Phillipps. Gd1-xSrxCoO3 for the electrode of solid oxide fuel cells Solid Srate Ionics 86 (1996) 1187-1190.         [ Links ]

105. T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida y M. Sano, A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures. Science 288 (2000) 2031-2033.         [ Links ]

106. K. Zhang, L. Ge, R. Ran, Z. Shao y S.M. Liu. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia 56 (2008) 4876-4889.         [ Links ]

107. B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu, Y. Zhou y G. Meng. In situ screen-printed BaZr0.1Ce0.7Y0.2O3-δ electrolyte based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode. Journal of Power Sources 186 (2009) 446-449.         [ Links ]

108. B. Lin, S. Zhang, L. Zhang, L. Bi, H. Ding, X. Liu, J. Gao y G. Meng. Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray. Journal of Power Sources 177 (2008) 330-333.         [ Links ]

109. B. Wei, Z. Lu, X. Huang, M. Liu, N. Li y W. Su. Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, perovskite oxide for IT-SOFC cathode. Journal of Power Sources 176 (2008) 1-8.         [ Links ]

110. H. Wang, C. Tablet, A. Feldhoff y J. Caro. A Cobalt-Free Oxygen-Permeable Membrane Based on the Perovskite Type Oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, . Advances Materials 17 (2005) 1785-788.         [ Links ]

111 . Q. Nian, L. Zhao, B. He, B. Lin, R. Peng, G. Meng y X. Liu, Layered SmBaCuCoO5+δ and SmBaCuFeO5+δ perovskite oxides as cathode materials for proton-conducting SOFCs. Journal of Alloys and Compounds 492 (2010) 291-294.         [ Links ]

112. R. O'Hayre, D. Barnett y F. Prinz, The triple phase boundary. Journal of the Electrochemical Society 152 (2005) A439-A444.         [ Links ]

113. S. Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews 104 (2004) 4791-4843.         [ Links ]

114. Nguyen Trung Hieu, Junseo Park, Beomseok Tae. Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ, perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells. Materials Science and Engineering B 177 (2012) 205- 209.         [ Links ]

115. K. Song y K. Lee. Characterization of Ba0.5Sr0.5M1-xFexO3-δ (M = Co and Cu) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells. Ceramics International 38 (2012) 5123-5131.         [ Links ]

116. A. Esquirol, N.P. Brandon, J.A. Kilner y M. Mogensen, Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate Temperature SOFCs. Journal of the Electrochemical Society 151 (2004) A1847-A1855.         [ Links ]

117. S. Yoo, J. Shin y G. Kim. Thermodynamic and electrical characteristics of NdBaCo2O5+δ at various oxidation and reduction states. Journal of Materials Chemistry 21 (2011) 439-443.         [ Links ]

118. D. Chen, R. Ran, K. Zhang, J. Wang y Z. Shao. Intermediate temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. Journal of Power Sources 188 (2009) 96-105.         [ Links ]

119 . A. Taskin, A. Lavrov y Y. Ando. Fast oxygen diffusion in A-site ordered perovskites. Journal of Solid State Chemistry 35 (2007) 481-90.         [ Links ]

120. A. Taskin, A. Lavrov y Y. Ando. Achieving fast oxygen diffusion in perovskite by cation ordering. Applied Physical Letter 86 (2005) 091910-091910-3.         [ Links ]

121. H. Kim y A Manthiram. LnBaCo2O5 oxides as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Electrochemical Society 155 (2008) 385-390.         [ Links ]

122. S. Choi, S. Park, J. Kim, T. Hyoung Lim, J. Shin y G. Kim. Electrochemical properties of an ordered perovskite LaBaCo2O5+δ-Ce0.9Gd0.1O2-δ composite cathode with strontium doping for intermediate-temperature solid oxide fuel cells Electrochemistry Communications 34 (2013) 5-8.         [ Links ]

123. J. Kim y J. Irvine. Characterization of layered perovskite oxides NdBa1-xSrxCo2O5+δ (x = 0 and 0.5) as cathode materials for IT-SOFC. International Journal of Hydrogen Energy 37 (2012) 5920-5929.         [ Links ]

124. S. Yoo, S. Choi, J. Kim, J. Shin y G. Kim. Investigation of layered perovskite type NdBa1-xSrxCo2O5+δ (x = 0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta 100 (2013) 44-50.         [ Links ]

125. A. Tomkiewicz, M. Meloni y S. McIntosh. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics 260 (2014) 55-59.         [ Links ]

126. D. Baek. A. Kamegawa y H. Takamura. Preparation and electrode properties of composite cathodes based on Bi1-xSrxFeO3-? with Perovskite-type structure. Solid State Ionics 262 (2014) 691-695.         [ Links ]

127. S. Pang, X. Jiang, X. Li, Z. Su, H. Xu, Q. Xu y C. Chen. Characterization of cation-ordered perovskite oxide LaBaCo2O5+δ as cathode of intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy 37 (2012) 6836-6843.         [ Links ]

128. R Amin y K Karan. Characterization of La0.5Ba0.5CoO3-δ as a SOFC cathode material. Journal of the Electrochemical Society 157 (2010) B285-B291.         [ Links ]

129. S. Pang, X. Jiang, X. Li, H. Xu, L. Jiang, Q. Xu, Y. Shi y Q. Zhang. Structure and properties of layered perovskite LaBa1-xCo2O5+δ (x = 0 — 0.15) as intermediate-temperature cathode material. Journal of Power Sources 240 (2013) 54-59.         [ Links ]

130. H. Jung, Y. Kim, P. Connor, J. Irvine, J. Bae y W. Zhou. Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+δ, a potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 194 (2009) 704-711.         [ Links ]

131. Q. Zhou, T. He y Y. Ji. SmBaCo2O5 double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources 185 (2008) 754-758.         [ Links ]

132. X. Jiang, Q. Xu, Y. Shi, X. Li, W. Zhou, H. Xu y Q. Zhang. Synthesis and properties of Sm3+ -deficient Sm1-xBaCo2O5+δ perovskite oxides as cathode materials. International Journal of Hydrogen Energy39 (2014) 10817-10823.         [ Links ]

133. Q. Zhou, T. He, Q. He y Y Ji, Electrochemical performances of LaBaCuFeO5 and LaBaCuCoO5+δ as potential cathode materials for intermediate-temperature solid oxide fuel cells. Electrochemical Community 11 (2008) 80-83.         [ Links ]

134. Y. Ling, B. Lin, L. Zhao, X. Zhang, J. Yu, R. Peng, G. Meng y X. Liu. Layered perovskite LaBaCuMO5+x (M= Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells. Journal of Alloys and Compounds 493 (2010) 252-255.         [ Links ]

135 K. Jung, C. Mark, J. Irvine y B. Joongmyeon. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5 (Ln = Pr, Sm and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society 156 (2009) 682-689.         [ Links ]

136. X. Ding, X. Kong, H. Wu, Y. Zhu, J. Tang y Y. Zhong. SmBa0.5Sr0.5Cu2O5+δ and SmBa0.5Sr0.5CuFeO5+δ layered perovskite oxides as cathodes for IT-SOFCs. International Journal of Hydrogen Energy 37 (2012) 2546-2551.         [ Links ]

137. J. Kim, S. Choi, S. Park, C. Kim, J. Shin y G. Kim, Effect of Mn on the electrochemical properties of a layered perovskite NdBa0.5Sr0.5Co2-xMnxO5+δ (x = 0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells. Electrochimica Acta 112 (2013)712-718.         [ Links ]

138. A. Jun, T. Lim, J. Shin, y G. Kim, Electrochemical properties of B-site Ni doped layered perovskite cathodes for ITSOFCs. International Journal of Hydrogen Energy (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.06.136.         [ Links ]

139. A. Azad, J. Kim y J. Irvine. Structure-property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+δ, (Ln = Pr, Nd) for solid oxide fuel cells. Journal of Power Sources 196 (2011)7333-7337.         [ Links ]

140. J. Kim, M. Cassidy, J. Irvine y J. Bae. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of Electrochemical Society 156 (2009) B682-B689.         [ Links ]

141 . J. Kim, F Prado y A Manthiram. Characterization of GdBai-xSrxCo2O5 (0 ≤ x ≥ 1.0) double perovskites as cathodes for solid oxide fuel cells. Journal of Electrochemical Society 155 (2008) B1023-B1028.         [ Links ]

142. B. Wei, Z. Lü, W. Jiang, X. Zhu, W. Su. Functionally graded cathodes based on double perovskite type GdBaCo2O5 oxide. Electrochimica Acta 134 (2014) 136-142.         [ Links ]

143. A. Tarancón, S. Skinner, R. Chater, F. Ramírez y J. Kilner. Layered perovskite as promising cathodes for intermediate temperature solid oxide fuel cells. Journal Materials Chemistry 17 (2007)3175-3181.         [ Links ]

144. K. Lee, A. Manthiram. Comparison of Ln0.6Sr0.4CoO3 (Ln = La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells. Journal of the Electrochemical Society 153 (2006) A794-A798.         [ Links ]

145. K. Zhang, L. Ge, R. Ran, Z. Shao y S. Liu. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia 56 (2008) 4876-4789.         [ Links ]

146 . B. Wei, Z. Lu, X. Huang, Z. Liu, J. Miao y N. Li. Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite oxide as a novel cathode for intermediate-temperature solid-oxide fuel cells. Journal American Ceramic Society 90 (2007) 3364-3366.         [ Links ]

147. H. Ding y X. Xue. Novel layered perovskite GdBaCoFeO5-δ as a potential cathode for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy 35 (2010) 4311-4315.         [ Links ]

148. H. Ding y X. Xue . GdBa0.5Sr0.5Co2O5 layered perovskite as promising cathode for proton conducting solid oxide fuel cells. Journal of Alloys and Compounds 496 (2010) 683-686.         [ Links ]

149. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen y C. Mims. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry 17 (2007) 2500-2505.         [ Links ]

150. T. Ishihara, T. Kudo, H. Matsuda, y Y. Takita. Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. Journal of Electrochemical Society 142 (1995) 1519-1524.         [ Links ]

151. F. Zhao, S. Wanga, K. Brinkmanb y F. Chena. Layered perovskite PrBa0.5Sr0.5Co2O5 as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. Journal of Power Sources 195 (2010) 5468-5473.         [ Links ]

152. L. Zhao, B. He, Q. Nian, Z. Xun, R. Peng, G. Meng y X. Liu. Layered SmBaCuCoO5+? and SmBaCuFeO5+δ perovskite oxide as cathode materials for proton-conducting SOFCs. Journal of Power Sources 194 (2009) 291-294.         [ Links ]

153. B. Lin, S. Zhang, L. Zhang, L. Bi, H. Ding, X. Liu y G. Meng. Protonic ceramic membrane fuel cells with layered GdBaCo2O5+δ cathode prepared by gel-casting and suspension spray. Journal of Power Sources 177 (2008) 330-333.         [ Links ]

154. B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu, Y. Zhou y G. Meng. In situ screen-printed BaZr0.1Ce0.7Y0.2O3-δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5 + δ cathode. Journal of Power Sources 186 (2009) 446-449.         [ Links ]

155 . B. Wang, G. Long, Y. Ji, M. Pang y X. Meng. Layered perovskite PrBa0.5Sr0.5CoCuO5 as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds 606 (2014) 92-96.         [ Links ]

156. H. Ding y X. Xue. PrBa0.5Sr0.5Co2O5 layered perovskite cathode for intermediate temperature solid oxide fuel cells. Electrochimica Acta 55 (2010) 3812-3816.         [ Links ]

157. H. Ding, X. Xue. Proton conducting solid oxide fuel cells with layered PrBa0.5Sr0.5Co2O5+δ perovskite cathode. International Journal of Hydrogen Energy 35 (2010) 2486-2490.         [ Links ]

158. L. Zhao, Q. Nian, B. He, B. Lin, H. Ding, S. Wang, R. Peng, G. Meng y X. Liu. Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 195 (2010) 453-456.         [ Links ]

159. J.C. Burley, J.F. Mitchell, S. Short, D. Miller, Y. Tang. Structural and Magnetic Chemistry of NdBaCo2O5+δ . Journal of Solid State Chemistry 170 (2003) 339-350.         [ Links ]

160. Q.J. Zhou, F. Wang, Y. Shen, T.M. He. Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Journal Power Sources 195 (2010)2174-2181.         [ Links ]

161 . L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, Ln1-xSrxCo1-yFeyO3-δ (Ln=Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158 (2003) 55-65.         [ Links ]

162. L. Zhao, J. Shen, B. He, F. Chen y C. Xia. Synthesis, characterization and evaluation of PrBaCo2-xFexO5-δ as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy 36 (2011) 3658-3665.         [ Links ]

163. Q. Zhou, Y. Zhang, Y. Shen y T. He. Layered Perovskite GdBaCuCoO5-δ Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells. Journal Electrochemical Society 157 (2010) B628-B632.         [ Links ]

164. S. Jo, P. Muralidharan y D. Kim. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5-δ cathode on Ce1.9Gd0.1O1.95 electrolyte for IT-SOFCs. Electrochemistry Communications 11 (2009) 2085-2088.         [ Links ]

165. H. Ding y X. Xue. Layered perovskite GdBaCoFeO5-δ as cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy 35 (2010) 4316-4319.         [ Links ]

166. F. Jin, Y. Shen, R. Wang y T. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate temperature solid-oxide fuel cells. Journal of Power Sources 234 (2013) 244-251.         [ Links ]

167. Y. Kim y A, Manthiram. Layered LnBaCo2-xCuxO5+δ (0 ≤ x ≥ 1 . 0) perovskite cathodes for intermediate temperature solid oxide fuel cells. Journal of the Electrochemical Society 158 (2011)B276-282.         [ Links ]

168. M. West y A. Manthiram, Layered LnBa1-x4SrxCoCuO5+δ (Ln [ Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy 38 (2013) 3364-3372.         [ Links ]

169. J. Kim, M. Cassidy, J. Irvine y J. Bae. Electrochemical investigation of composite cathode with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell. Chemistry of Materials 22 (2010) 883-892.         [ Links ]

170. A. Mckinlay, P Connor, J. Irvine y W. Zhou. Structural chemistry and conductivity of a solid solution of YBa1-xSrxCo2O5 + δ. Journal of Physics Chemistry C 111 (2007) 19120-19125.         [ Links ]

171. J. Areum, K. Junyoung, S. Jeeyoung y K. Guntae. Optimization of Sr content in layered SmBa1-xSrxCo2O5-δ perovskite cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy 37 (2012) 18381-18388.         [ Links ]

172. L. Barbey, N. Nguyen, V. Caignaert, M. Hcrvieu y B. Raveau, Mixed oxides of cobalt and copper with a double pyramidal layer structure. Materials Research Bulletin 27 (1992) 295-301.         [ Links ]

173. K. Zheng, K. Swierczek, J. Bratek y A. Klimkowicz. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics 262 (2014) 354-358.         [ Links ]

174. S. Lü, B. Yu , X. Meng, Y. Zhang, Y. Ji, Ch. Fu, L. Yang, X. Li, Y. Suia y J. Yang, Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6O5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International 40 (2014) 14919-14925.         [ Links ]

175 . Z. Zhu, Z. Tao, L. Bi y W. Liu, Investigation of SmBaCuCoO55+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin. 45 (2010) 1771-1774.         [ Links ]

176. X. Kong y X. Ding. Novel layered perovskite SmBaCu2O5 as a potential cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy 36 (2011) 15715-15721.         [ Links ]

177. S. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science 43 (2008) 6799-6833.         [ Links ]

178. J. Perez, C. Ritter, D.Coll, G. Mather, J. Canales, M. Galvez, F. Alvarado y U. Amador, Structural and electrochemical characterization of La2-xSrxNiTiO6-δ. International Journal of Hydrogen Energy. 37 (2012) 7242-7251.         [ Links ]

179. M. Phillipps, N. Sammes y O. Yamamoto, Gd1-xAxCo1-yMnyO3 (A=Sr, Ca) as a cathode for the SOFC. Solid State Ionics 123 (1999) 131-138.         [ Links ]

180. L. Tai, M. Nasrallah, H. Anderson, D. Sparlin y S. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. II: The system La1-xSrxFe0.8O3. Solid State Ionics 76 (1995) 273-283.         [ Links ]

181. L. Tai, M. Nasrallah, H. Anderson, D. Sparlin y S. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. I: The system La0.8Sr0.2Co1-yFeyO3 Solid State Ionics 76 (1995)259-271.         [ Links ]

182. S. Li, W. Jin, N. Xu y J, Shi, Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3-δ membranes. Solid State Ionics 124 (1999) 161-170.         [ Links ]

183. E. Maguire, B. Gharbage, F. Marques y J. Labrincha, Cathode materials for intermediate temperature SOFCs. Solid State Ionics 127 (2000) 329-335.         [ Links ]

184. D. Wailer, J. Lane, J. Kilner y B. Steele, The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes. Solid State Ionics 86 (1996) 767-772.         [ Links ]

185. H.Tu, Y. Takeda, N. Imanishi y O. Yamamoto, Ln0.4Sr0.6Co0.8Fe0.2O3 (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State lonics 117 (1999) 277-281.         [ Links ]

186. B. Lin, J. Chen, Y. Ling, X. Zhang, Y. Jiang, L. Zhao, X. Liu y G. Meng, Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2 O3-δ perovskite cathode and functional graded anode. Journal of Power Sources 195 (2010) 1624-1629.         [ Links ]

187. E. Bucher, W. Sitte, F. Klauser y E. Bertel, Impact of humid atmospheres on oxygen exchange properties, surface near elemental composition, and surface morphology of La0.6Sr0.4CoO3 δ. Solid State Ionics 208 (2012) 43-51.         [ Links ]

188. E. Bucher, W. Sitte, F. Klauser y E. Bertel, Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600°C in dry and humid atmospheres. Solid State Ionics 191 (2011) 61-67.         [ Links ]

189. E. Bucher. Ch. Gspan, F. Hofer y W. Sitte, Post-test analysis of silicon poisoning and phase decomposition in the SOFC cathode material La0.58Sr0.4Co0.2Fe0.8O3-δ by transmission electron microscopy. Solid State Ionics 230 (2013) 7-11.         [ Links ]

190. J. Alvarado-Flores, Estudio comparativo de las diferentes tecnologías de celdas de combustible. Boletín de la sociedad española de cerámica y vidrio 52 (2103) 105-117.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License