SciELO - Scientific Electronic Library Online

 
vol.60 issue4Quasiclassical approach to tunnel ionization in the non relativistic and relativistic regimesMapping of solutions of the Hamilton-Jacobi equation by an arbitrary canonical transformation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.60 n.4 México Jul./Aug. 2014

 

Research

 

Influence of the precursors in the morphology, structure, vibrational order and optical gap of nanostructured ZnO

 

J.F. Jurado, A. Londoño-Calderón, F.F. Jurado-Lasso and, J.D. Romero-Salazar

 

Laboratorio de Propiedades Térmicas Dieléctricas de Compositos, Departamento de Física y Química, Universidad Nacional de Colombia, A.A 127, Manizales, Colombia, e-mail: jfjurado@unal.edu.co

 

Received 25 March 2014.
Accepted 23 May 2014.

 

Abstract

The synthesis of ZnO by reaction in solid state from two precursor salts (zinc acetate and zinc sulfate), presented significant differences concerning morphology, structure, vibrational order and optical gap. As well as covering in the size of the compounds, a homogeneous distribution of nanoparticles of 21±3 nm and microstars of 1.03±0.19 μm respectively. The ZnO showed a structural phase with a vibrational state of the hexagonal type (wurtzite). The variation in the morphology due to the precursor is attributed to the disorder within of lattice, which contributes to vibrational changes and is correlated to the degrees of freedom of molecules. Measurements of UV-Vis of nanoparticles displayed a band gap (Eg) lower than the one reported for the bulk material.

Keywords: Optical properties; nanorods; nanocrystalline; X-ray diffraction.

 

PACS: 78.67.Bf; 78.67.Qa; 78.67.Bf; 61.05.cp

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was supported by the Research Direction of Manizales DIMA from National University of Colombia-Project number 15875. The authors wish to thank to: Plasma physics, Material optical properties and Chemistry laboratories for the XRD, Raman and UV-Vis measurements. As well as the University of Texas, at Antonio and Kleberg Advanced Microscopy Laboratory where the SEM measurements were carried out.

 

References

1. O. Lupan et al., Materials Research Bulletin 45 (2010) 1026.         [ Links ]

2. K. Kim, H. R. Kim, K. I. Choi, H. J. Kim, and J. H. Lee, Sensors and Actuators B 155 (2011) 745.         [ Links ]

3. M. M. Arafat, B. Dinan, S. A. Akbar, and A. S. M. A. Haseeb, Sensors 12 (2012) 7207.         [ Links ]

4. P. C. Tao, Q. Feng, J. Jiang, H. Zhao, R. Xu, S. Liu, M. Li, J. Sun, and Z. Song, Chemical Physics Letters 522 (2012) 92.         [ Links ]

5. C. Luan et al., Nanoscale Research Letters 6 (2011) 340.         [ Links ]

6. N. Singh, R. M. Mehra, A. Kapoor, and T. Soga, Journal of renewable and sustainable energy 4 (2012) 013110.         [ Links ]

7. M. Navaneethan, J. Archana, M. Arivanandhan, and Y. Hayakawa, Chemical Engineering Journal 213 (2012) 70.         [ Links ]

8. G. C. Yi, T. Yatsui, and M. Ohtsu, Comprehensive Nanoscience and Technology: Nanomaterials 1 (2011) 335.         [ Links ]

9. C. Ma, Z. Zhou, H. Wei. Z. Yang, Z. Wang, and Y. Zhang, Nanoscale Research Letters 6 (2011) 536.         [ Links ]

10. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, Journal of Nanomaterials 2012 (2012) 1.         [ Links ]

11. L. Schmidt-mende and J. L. Macmanus-driscoll, Materials today 10 (2007) 40.         [ Links ]

12. H. Xu, H. Wang, Y. Zhang, W. He, M. Zhu, B. Wang, and H. Yan, Ceramics International 30 (2004) 93.         [ Links ]

13. H. Wang, J.Xie, K. Yan, M.Duan, Journal of Materials Sciences and Technology 27 (2011) 153.         [ Links ]

14. B. Karthikeyan and T.Pandiyarajan, Journal of Luminescence 130 (2010) 2317.         [ Links ]

15. C.Wua, L.Shen, Q. Huang, and Y. C. Zhang, Powder Technology 205 (2011) 137.         [ Links ]

16. C.Wun and Q. Huang, Journal of Luminescence 130 (2010) 2136.         [ Links ]

17. Y. Cao, P. Hu, W. Pan, Y. Huang, and D.Jia, Sensors and Actuators B 134 (2008) 462.         [ Links ]

18. C. F. Jin, X. Yuan, W. W.Ge, J. M. Hong, and X. Q.Xin, Nanotechnology 14 (2003) 667.         [ Links ]

19. X. Jia, H. Fan, M.Afzaal, X. Wu, and P. O'Brien, Journal of Hazardous Materials 193 (2011) 194.         [ Links ]

20. A. Sugunan, H. C.Warad, M.Boman, and J.Dutta, Journal of Sol-Gel Science and Technology 39 (2006) 49.         [ Links ]

21. A. Jana, N. R.Bandyopadhyaya, and P. S. Devi, Solid State Sciences 13 (2011) 1633.         [ Links ]

22. R. Zhang, P. G. Yin, N. Wang, and L.Guo, Solid State Sciences 11 (2009) 865.         [ Links ]

23. W.Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, and W.Zeng, Physica E 44 (2011)680.         [ Links ]

24. M. S. Soosen, K. Jiji, C. Anoop, and K. C. George, Indian Journal of Pure and Applied Physics 48 (2010) 703.         [ Links ]

25 . M. Navaneethan, J. Archana and Y. Hayakawa, Chemical Engineering Journal, 15 (2013) 8246.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License