SciELO - Scientific Electronic Library Online

vol.60 issue3Retardo temporal en las lentes por galaxias en el contexto de Reissner - NordstromGravitational waves bounds in Brane-Worlds author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.60 n.3 México May./Jun. 2014




Expanded use of a fast photography technique to characterize laser-induced plasma plumes


M. A. Valverde-Alvaa, T. García-Fernándezb, G. Diáz-Cortésa, J. L. Sánchez-Llamazaresc, E. Rodríguez-Gonzálezd, C. Sanchez-Akee, A. Quintana-Nedelcosc, and M. Villagrán-Munize


a Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, México D.F., C.P. 04510, México.

b Universidad Autónoma de la Ciudad de México, Prolongación San Isidro 151, San Lorenzo Tezonco, México D.F., 09790, México. e-mail:

c Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San Jóse 2055 Col. Lomas 4a, S.L.P. 78216, San Luis Potosí, México.

d CICATA-IPN Unidad Altamira. Tamaulipas, México.

e CCADET Universidad Nacional Autónoma de México, México D.F., 04510, México.


Received 26 August 2013
accepted 26 February 2014



Expanded use of fast photography is proposed to characterize laser ablation plasma plumes by the analysis of a set of photographs by means of appropriate mathematical algorithms. The laser ablation plasma plumes studied were generated by ablation of both a multicomponent target of the nominal composition Ni50Mn37Sn13 and a highly pure Cu target (Cu) using a Q-switched Nd-YAG laser system. The experiments were conducted under different background argon pressures. Several photograph parameters such as intensity per unit time of exposure for a pixel, mean intensity per pixel per unit time of exposure, integrated intensity and cross correlation were studied. The intensity per unit time of exposure allowed for identification of the fast component of the triple structure of the expanding plasma into the background gas (that travels at a speed close to the one measured in vacuum). This parameter together with the use of cross correlation enabled the identification of regions of the expanded plasma plume with higher and lower similarities in their optical emission behavior. The mean intensity per pixel per unit time of exposure can be used as a measurement of the amount of light emitted by the plume as a function of time.

Keywords: Plasma diagnostics; laser ablation; digital image processing; fast photography; plasma plume splitting.


PACS: 52.38.Mf; 07.05.Pj; 52.70-m





The authors acknowledge financial support received from: (a) CONACYT, Mexico, under projects CB 176705, CB-2010-01-157541 and CB183728; (b) from ICyTDF, UACM, Gobierno del Distrito Federal-Mexico and Laboratorio Nacional de Investigaciones en Nanociencias y Nanotecnología (LINAN, IPICYT); (c) from DGAPA, UNAM, under project IN 112112. The authors acknowledge Jose Castro for technical support.



1. S. George, A. Kumar, R. K. Singh, and V. P. N. Nampoori, Appl. Phys. Lett. 94 (2009) 141501.         [ Links ]

2. S.S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, J. Appl. Phys. 93 (2003) 2380.         [ Links ]

3. S. Amoruso, A. Sambri, M. Vitiello, and X. Wang, Appl. Surf. Sci. 252 (2006) 4712.         [ Links ]

4. A. K. Sharma and R. K. Thareja, Appl. Phys. Lett. 84 (2004) 4490.         [ Links ]

5. S. Abdelli-Messaci, T. Kerdja, S. Lafane, and S. Malek, Part B 64 (2009) 968.         [ Links ]

6. A. Misra and R. K. Thareja, IEEE Trans. Plasma Sci. 27 (1999) 1553.         [ Links ]

7. S. Lafane, T. Kerdja, S. Abdelli-Messaci, S. Malek, and M. Maaza, Appl. Phys. A 98 (2010) 375.         [ Links ]

8. D. B. Geohegan and A. A. Puretzky, Appl. Phys. Lett. 67 (1995) 197.         [ Links ]

9. H. Haberland, Z. Insepov, and M. Moseler, Phys. Rev. B 51 (1995) 11061.         [ Links ]

10. C. N. Afonso et al., Appl. Phys. A 69 (1999) S201.         [ Links ]

11. R. K. Thareja, A. Misra, and S. R. Franklin, Spectrochim. Acta, Part B 53 (1998) 1919.         [ Links ]

12. S. Mahmood, R. S. Rawat, M. S. B. Darby, M. Zakaullah, S. V. Springham, T. L. Tan, and P. Lee, Phys. Plasmas 17 (2010) 103105.         [ Links ]

13. E. de Posada, M. A. Arronte, L. Ponce, E. Rodríguez, T. Flores, and J. G. Lunney, Journal of Physics: Conference Series 274 (2011) 012078.         [ Links ]

14. S. I. Anisimov, D. Bäuerle, and B. S. Luk'Yanchuk, Phys. Rev. B 48 (1993) 12076.         [ Links ]

15. C. L. Liu, J. N. Leboeuf, R. F. Wood, D. B. Geobegan, J. M. Donato, K. R. Chen, and A. A. Puretzky, Mater. Sci. Eng. B 47 (1997) 70.         [ Links ]

16. D. B. Geohegan, Applied Physics Letters 60 (1992) 2732.         [ Links ]

17. A. Misra, A. Mitra, and R. Thareja, Applied Physics Letters 74 (1999) 929.         [ Links ]

18. C. Phelps, C. J. Druffner, G. P. Perram, and R. R. Biggers, J. Phys. D 40 (2007) 4447.         [ Links ]

19. B. Angleraud, C. Girault, C. Champeaux, F. Garrelie, C. Germain, and A. Catherinot, Appl. Surf. Sci. 96 (1996) 117.         [ Links ]

20. S. H. Jeong, R. Greif, and R. E. Russo, J. Phys. D 32 (1999) 2578.         [ Links ]

21. S. Amoruso, J. Schou, and J. G. Lunney, Appl. Phys. A 92 (2008) 907.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License