SciELO - Scientific Electronic Library Online

 
vol.60 issue1Black holes from Myers-Perry solution author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.60 n.1 México Feb. 2014

 

Instrumentación

 

Graphite thin film characterization using a simplified resonant near field scanning microwave microscope

 

G. López-Maldonado, N. Qureshi*, O. V. Kolokoltsev, H. Vargas-Hernández and C. L. Ordóñez-Romero

 

Centro de Ciencias Aplicadas y Desarrollo Tecnológico (CCADET), * e-mail: naser.qureshi@ccadet.unam.mx

Instituto de Física, Universidad Nacional Autónoma de México, Cd. Universitaria, México D.F., México.

 

Received 19 February 2013.
Accepted 30 September 2013.

 

Abstract

We describe a highly simplified design for a coaxial resonant near field scanning microwave microscope operating at 7.4 GHz configured to measure surface resistance and obtain topographic images with micrometer resolution. This design for a resonant probe tip combined with a highly stable mechanical system developed to rapidly tune the resonant frequency enables a simplified and effective approach to implementing near field microwave microscopy. We present images and measurements performed on a non-uniform granular graphite film sample and the surface resistance results agree with data in the literature.

Keywords: Near field scanning microwave microscopy; surface resistance; topographic images; resonant probe; resonant frequency.

 

Resumen

Presentamos una descripción del diseño de un microscopio de microondas altamente simplificado de exploración por barrido con resonador coaxial que opera en el campo cercano a 7.4 GHz configurado para la medición de la resistencia superficial y la obtención de imágenes topográficas con resolución micrométrica. El diseño de una sonda altamente estable permite la sintonización rápida de la frecuencia de resonancia mediante un sistema mecánico, y esto hace posible una implementación eficiente de la microscopía de microondas de campo cercano. Las imágenes y mediciones presentadas corresponden a una película de grafito granular no uniforme cuya resistencia superficial medida concuerda con los datos reportados en la literatura.

Descriptores: Microscopía de microondas de campo cercano; resistencia superficial; imágenes topográficas; sonda resonante; frecuencia resonante.

 

PACS: 78.70.Gq.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgement

This work was supported by PAPIIT UNAM, project IN104513. The authors are grateful to Agilent, Mexico, for their generous assistance with microwave measurements.

 

References

1. T. Wei, X. -D. Xiang, W. G. Wallace-Freedman and P. G. Schultz, Appl. Phys. Lett. 68 (1996) 3506.         [ Links ]

2. M. Tabib-Azar and D. Akinwande, Rev. Sci. Instrum. 71 (2000) 1460.         [ Links ]

3. M. Park, H. Yoo, H. Yoo, S. Na, S. Kim, K. Lee, B. Friedman, E. Lim and M. Iwamoto, Thin Solid Films 499 (2006) 318.         [ Links ]

4. C. Gao and X. -D. Xiang, Rev. Sci. Instrum. 69 (1998) 3846.         [ Links ]

5. M. Tabib-Azar, P. S. Pathak, G. Ponchak and S. LeClair, Rev. Sci. Instrum. 70 (1999) 2783.         [ Links ]

6. R. A. Kleismit, M. K. Kazimierczuk and G. Kozlowski, IEEE Trans. on Microwave Theory and Tech, 54 (2006) 639.         [ Links ]

7. A. Imtiaz, S. M. Anlage, J. D. Barry and J. Melngailis, Appl. Phys. Lett. 90 (2007) 143106-1.         [ Links ]

8. M. Tabib-Azar and Y. Wang, IEEE Trans. on Microwave Theory and Tech. 52 (2004) 971.         [ Links ]

9. D. W. van der Weide, Appl. Phys. Lett. 70 (1997) 677.         [ Links ]

10. M. Tabib-Azar, D. -P. Su, A. Pohar, S. R. LeClair and G. Ponchak, Rev. Sci. Instrum. 70 (1999) 1725.         [ Links ]

11 . B. T. Rosner and D. W. van der Weide, Rev. Sci. Instrum. 73 (2002) 2505.         [ Links ]

12. C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar and F. C. Wellstood, Appl. Phys. Lett. 69 (1996) 3272.         [ Links ]

13. M. Abu-Teir, M. Golosovsky, and D. Davidov, Rev. Sci. Instrum. 72 (2001)2073.         [ Links ]

14. J. Kim, K. Lee, B. Friedman and D. Cha, Appl. Phys. Lett. 83 (2003) 1032.         [ Links ]

15. J. Kim, M. S. Kim, K. Lee, J. Lee, D. Cha and B. Friedman, Meas. Sci. Technol. 14 (2003) 7.         [ Links ]

16. C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, S. M. Anlage and F. C. Wellstood, Appl. Phys. Lett. 72 (1998) 1778.         [ Links ]

17. D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood and S. M. Anlage, Appl. Phys. Lett. 72 (1998) 861.         [ Links ]

18. K. Lee, H. Melikyan, A. Babajanyan, T. Sargsyan, J. Kim, S. Kim and Barry Friedman, Ultra-microscopy 109 (2009) 889.         [ Links ]

19. S-C. Lee, C. P. Vlahacos, B. J. Feenstra, A. Schwartz, D. E. Steinhauer, F. C. Wellstood and S. M. Anlage, Appl. Phys. Lett. 77 (2000) 4404.         [ Links ]

20. A. Tselev, S. M. Anlage, Z. Ma and J. Melngailis, Rev. Sci. Instrum. 78 (2007) 044701-1.         [ Links ]

21. P. J. Petersan and S. M. Anlage, J. Appl. Phys. 84 (1998) 3392.         [ Links ]

22. N. Qureshi, O. V. Kolokoltsev, R. Ortega-Martinez,C. L. Ordoñez-Romero and J. M. Saniger, J. Nanosci. Nanotechnol 8 (2008) 6466.         [ Links ]

23. S. M. Anlage, V. V. Talanov and A. R. Schwartz, Principles of Near-Field Microwave Microscopy, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, vol. 1, (Springer-Verlag, New York, 2007), pp. 215253.         [ Links ]

24. D. M. Pozar, Microwave Engineering, 3rd ed.(John Wiley & Sons, USA, 2005). pp 687.         [ Links ]

25. M. Mehdizadeh, Microwave/RF Applicators and Probes, (Elsevier, Great Britain, 2010). pp 24 56.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License