SciELO - Scientific Electronic Library Online

 
vol.59 issue6Gas-solid phase equilibrium of biosubstances by two biological algorithmsNumerical study of the Boussinesq approach validity for natural convection and surface thermal radiation in an open cavity author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.59 n.6 México Nov./Dec. 2013

 

Investigación

 

Tricritical phenomena in asphaltene/aromatic hydrocarbon systems

 

J. H. Pacheco-Sáncheza and G. Ali Mansoorib

 

a Instituto Tecnológico de Toluca. División de Estudios de Posgrado e Investigación, Av. Tecnológico s/n, 52149 Metepec, Estado de México, México.

b Departments of BioEngineering, Chemical Engineering and Physics, University of Illinois at Chicago, Chicago, Illinois 60607-7000.

 

Received 16 October 2012
Accepted 12 August 2013

 

Abstract

The calculation of phase behavior performed for asphaltene-micelles systems that assume several forms when they are mixed with petroleum fluid depending on its aromaticity, and on the relative sizes and polarities of the particles present in such fluid mixtures, is extended to tricritical phenomena. Asphaltene monomers form micelles in the presence of excess amounts of aromatic hydrocarbons and polar solvents, and they are dispersed in a petroleum fluid. The coupling between the micellization and phase separation may, in principle, lead to a near-tricritical coexistence of a monomer phase and a micellar phase; however, this tricritical phenomenon has not been experimentally observed. In this report, such tricritical phenomenon for asphaltene / aromatic systems is predicted.

Keywords: Asphaltene-aromatic systems; phase separation; micellar solutions; tricritical points; second order phase transition.

 

Resumen

El cálculo de la conducta de fase efectuado para sistemas de micelas de asfaltenos que supone varias formas cuando son mezclados con fluidos petroleros dependientes tanto de su aromaticidad como de los tamaños relativos y de las polaridades de las partículas presentes en tales mezclas de fluidos, es extendido al fenómeno tricrítico. Monómeros de asfaltenos forman micelas en la presencia de cantidades de hidrocarburos aromáticos en exceso y solventes polares, y están dispersados en un fluido petrolero. El acoplamiento entre la micelización y la separación de fase puede, en principio, llevar hacia una coexistencia tricrítica de una fase monómero y una fase micela; sin embargo, el fenómeno tricrítico no ha sido observado experimentalmente en soluciones de asfaltenos. En este reporte, se predice dicho fenómeno tricrítico para sistemas asfalteno / aromático.

Descriptores: Sistemas asfalteno-aromático; separación de fase; soluciones micelares; puntos tricríticos; transiciones de fase de segundo orden.

 

PACS: 05.70.Fh; 05.90.+m; 83.70.Fh

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. T.F. Yen, and G.V. Chillingarian, (Editors), Asphaltenes and asphalts, Vol. 1, (Elsevier Science. New York 1994).         [ Links ]

2. T.F. Yen, and G.V. Chillingarian, (Editors) 2000, Asphaltenes and asphalts, Vol. 2, (Elsevier Science. New York 2000).         [ Links ]

3. J.G. Speight, in the book Asphaltenes and Asphalts, 1, Developments in Petroleum Science, 40 edited by Yen T. F. and G. V. Chilingarian, (Elsevier Science, New York 1994). Chapter: Chemical and physical studies of petroleum asphaltenes.         [ Links ]

4. G.A. Mansoori, Int. J. Oil, Gas and Coal Technology 2 (2009) 141.         [ Links ]

5. J.H. Pacheco-Sánchez, and G.A. Mansoori, Petroleum Science and Technology 16 (1998) 377.         [ Links ]

6. O.V. Rogacheva, R. N. Rimaev, Y. Z. Gubaidullin, and D.K. Khakimov, Colloid J. USSR, translated (1980) 490.         [ Links ]

7. S. Priyanto, G.A. Mansoori, and A. Suwono, Chem. Eng. Science 56 (2001) 6933.         [ Links ]

8. J.P. Dikie, and T.F. Yen, Anal. Chem. 39 (1967) 1847.         [ Links ]

9. J.P. Pfeiffer, and R.N. Saal, J. Phys. Chem. 44 (1940) 139.         [ Links ]

10. V.E. Galtsev, L.M Ametov, and O.Y. Grinberg, Fuel 74 (1995) 670.         [ Links ]

11. S.I. Andersen, and K.S. Birdi, Journal of Colloid and Interface Science 142 (1991) 497.         [ Links ]

12. I. K. Yudin et al., Petroleum Science and Technology 16 (1998) 395.         [ Links ]

13. E.Y. Sheu, M.M. de Tar, D.A. Storm and S.J. DeCanio, Fuel 71 (1992) 299.         [ Links ]

14. E.Y. Sheu, and D.A. Storm. in the book Asphaltenes Fundamentals and Applications, edited by Sheu E. Y. and Mullins O. C., (Plenum Press, New York 1995). Chapter I.         [ Links ]

15. E.Y. Sheu, J. Phys.: Condens. Matter 8 (1996) A125.         [ Links ]

16. D. Blankschtein, G.M. Thurston, and G.B. Benedek, Physical Review Letters 54 (1985) 955.         [ Links ]

17. L.D. Landau and E.M. Lifshitz, Statistical Physics. (Pergamon Press, London, 1958).         [ Links ]

18. D.I. Uzunov, Theory of Critical Phenomena. (World Scientific, London 1993).         [ Links ]

19. R.B.Griffiths, The Journal of Chemical Physics 60 (1974) 195.         [ Links ]

20. C.M. Knobler, and R.L. Scott, Phase Transitions and Critical Phenomena. Vol. 9, Edited by Domb C. and Lebowitz J.L., (Academic Press, London 1984).         [ Links ]

21. Schreinemakers, Zeitschrift für physikalische Chemie 29 (1899) 597.         [ Links ]

22. J. S. Rowlinson, and F. L. Swinton, Liquids and liquid Mixtures, (Butterworth Scientific, London 1982).         [ Links ]

23. K. Q. Tran, MSc Thesis. Reversing and Non-reversing Phase Transitions in Athabasca Bitumen Asphaltenes. (University of Alberta, Canada 2009).         [ Links ]

24. J.H. Pacheco-Sánchez, Revista Mexicana de Física 47 (2001) 324.         [ Links ]

25. D. Stigter, J. Colloid Interface Science, 47 (1974) 473.         [ Links ]

26. C. Tanford, Science 200 (1978) 1012.         [ Links ]

27. E. A. Guggenheim, Thermodynamics. (North-Holland Publishing Company, Amsterdam 1957).         [ Links ]

28. J. C. Ravey, G. Ducouret and D. Espinat, Fuel 67 (1988) 1560.         [ Links ]

29. G.A. Camacho-Bragado et al., Carbon 40 (2002) 2761-2766.         [ Links ]

30. X. Wang, J. Guo, X. Yang, and B. Xu Materials Chemistry and Physics 113 (2009) 821-823.         [ Links ]

31. C. Velasco-Santos, A. L. Martinez-Hernández, A. Cosultchi, R. Rodriguez, V.M. Castano, Chem. Phys. Lett. 373 (2003) 272-276.         [ Links ]

32. J. H. Pacheco-Sánchez, F. Alvarez, and J.M. Martínez, Energy & Fuels 18 (2004) 1676.         [ Links ]

33. S. I. Andersen, J. M. del Rio, D. Khvostitchenko, S. Shakir, and C. Lira-Galeana, Langmuir 17 (2001) 307-313.         [ Links ]

34. P. J. F. Harris, L. Zheng and S. Kazu, J. Phys.: Condens. Matter 20 (2008) 362201.         [ Links ]

35. T. F. Yen, G. J. Erdman, and S. S. Pollack, Analytical Chemistry 33 (1961) 1587.         [ Links ]

36. E. Rogel, Langmuir 18 (2002) 1928.         [ Links ]

37. E. Rogel, Langmuir 20 (2004) 1003.         [ Links ]

38. H.W. Yarranton, Journal of Dispersion Science and Technology 26 (2005) 5.         [ Links ]

39. Y. Huang, H. Cheng, C.C. Han, Macromolecules 44 (2011) 5020.         [ Links ]

40. O.V. Rogacheva, Y. Z. Gubaidullin, R. N. Rimaev, and T.D. Danilyan, Colloid J. USSR, translated (1984) 715.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License