SciELO - Scientific Electronic Library Online

vol.59 issue2Microwave assisted synthesis of CdS nanoparticles and their size evolutionFormation of copper nanoparticles in mordenites with variable SiO2/Al2O3 molar ratios under redox treatments author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.59 n.2 México Mar./Apr. 2013




The effects of the Bragg curve on the nuclear track formation in CR-39 polycarbonate, with the atomic force microscopy approach


C. Vázquez-Lópeza, B.E. Zendejas-Leala, R. Fragosoa, J.I. Golzarrib, and G. Espinosab


a Departamento de Física. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, México, D.F. México. Tel +5255 57473800 ext. 6108; Fax: +52 55 5747 3879 e-mail:

bInstituto de Física, Universidad Nacional Autónoma de México. Circuito de la Investigación Científica, Ciudad Universitaria, 04520, México, D.F. México.


Recibido el 2 de mayo de 2012.
Aceptado el 9 de enero de 2013.



The etching nuclear track parameters were analyzed, using atomic force microscopy (AFM), allowing the simulation of the nuclear track profiles evolution. For these experiments, CR-39 (LantrackTM) was chosen, because the excellent energy response to alpha particles. Due to the AFM limitations, it was necessary to reduce the incident particle energy in order to reach the Bragg peak region in the AFM scanning process. The different profile shapes of the etched tracks were clearly observed in the evolution process.

Keywords: Etched nuclear track profiles; CR-39; atomic force microscope (AFM); etched nuclear track simulation; etched nuclear track evolution.


PACS: 24.40.Wk; 61.80.-x; 68.37.Ps





This work was partially supported by Instituto de Ciencia y Tecnologia del Distrito Federal, México, grant 325-2009, and PAPIIT-DGAPA-UNAM Projects IN101910 and IN103013.



1. F. Vaginay, M. Fromm, D. Pusset, G. Meesen, A. Chambaudet, and A. Po, Rad. Meas. 34 (2001) 123.         [ Links ]

2. D. Hermsdorf, Rad. Meas. 44 (2009) 806.         [ Links ]

3. F. Palacios, J. Ricardo, D. Palacios, E. Goncalves, J. Valin, and R. De Souza, Optics Comm. 248 (2005) 41.         [ Links ]

4. B. Dörschel, D. Hermsdorf, U. Reichelt, S. Starke, Radiat. Meas. 37 (2003) 573.         [ Links ]

5. G. Espinosa, I. Jacobson, J. I. Golzarri, C. Vazquez, R. Fragoso, and E. Santos, Rad. Protect. Dosimetry. 101 (2002) 89.         [ Links ]

6. M. Yamamoto et al., Rad. Meas. 28 (1997) 227.         [ Links ]

7. N. Yasuda, M. Yamamoto, N. Miyahra, N. Ishigure, T. Kanai, and K. Ogura, Nucl. Inst. Meth. In Phys. Res. B 142 (1998) 111.         [ Links ]

8 . D. Nikezic, J.P.Y. Ho, C . W. Y. Yip, V. S . Y. Koo, and K. N. Yu, Nucl Inst Meth in Phys Res B. 197 (2002) 293.         [ Links ]

9. I.Horcas, R. Fernandez, J.M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and M. Baro, Rev. Sci. Instrum. 78 (2007) 013705. This software is free and available in site.         [ Links ]

10. J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids (Pergamon Press, Oxford, 1985). The code is available in         [ Links ]

11. G. Somogyi, Nucl Instrum and Meth 173 (1980) 21.         [ Links ]

12. D. Nikezic and D. Kostic, Radiat. Meas. 28 (1997) 185.         [ Links ]

13. Î.À. Bondarenko, D.V. Melnichuk, Yu.N. Onishchuk, S.Yu. Medvedev, Morphologic analysis of SSNTD tracks based on the Huygens principle for the purpose of alpha spectrometry.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License