SciELO - Scientific Electronic Library Online

 
vol.58 issue4Caracterización de nanopartículas magnéticas de CoFe2O4 y CoZnFe2O4 preparadas por el método de coprecipitación química author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.4 México Aug. 2012

 

Investigación

 

Photoinduced shape transformation from nanospheres to silver triangular nanoprisms and nanodisks: citrate ion concentration and stirring effects

 

I.A. López, and I. Gómez

 

Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México, e-mail: idaliagomezmx@yahoo.com.mx

 

Recibido el 20 de febrero de 2012;
aceptado el 30 de marzo de 2012

 

Abstract

Silver nanospheres were transformed into triangular nanoprisms and nanodisks via a photoinduced growth process. In order to show the citrate ion concentration effect, the silver nanospheres were prepared in three different silver/citrate ratios (1:1, 1:2 and 1:3). The photoinduced shape transformation was carried out under magnetic or ultrasonic stirring with the purpose of showing the stirring effect. Scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) images of the obtained nanoplates show nanoprisms and nanodisks of 50 and 30 nm, respectively. The formation of silver nanoplates is very sensitive to the citrate ion concentration, which is confirmed by the UV-Vis spectra. Higher concentrations of citrate ion produce triangular nanoprisms with more sharp vertices. The ultrasonic stirring limits and controls the nanoplate growth.

Keywords: Silver nanoprisms; ultrasonic stirring; localized surface plasmon resonance.

 

PACS: 81.07.-b

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Y.W. Cao, R. Jin, and C.A. Mirkin, Science 297 (2002) 1536.         [ Links ]

2. C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M.P. Pileni, J. Phys. Chem. B 108 (2004) 13242.         [ Links ]

3. B. Wiley, S.H. Im, Z.Y. Li, J.M. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B 110 (2006) 15666.         [ Links ]

4. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, and R.P. Van Duyne, Nano Lett. 6 (2006) 2060.         [ Links ]

5. X. Zheng, D. Guo, Y. Shao, S. Jia, S. Xu, B. Zhao, and W. Xu, Langmuir 24 (2008) 4394.         [ Links ]

6. J. Zhao, X. Zhang, C.R. Youzon, A.J. Haes, R.P. and Van Duyne, Nanomedicine 1 (2006) 219.         [ Links ]

7. A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, Nano Lett. 6 (2006) 1822.         [ Links ]

8. A. Tao, P. Sinsermsuksakul, and P. Yang, Nat. Nanotechnol. 2 (2007) 435.         [ Links ]

9. Y. Chen, C. Wang, Z. Ma, and Z. Su, Nanotechnology 18 (2007) 325602.         [ Links ]

10. J. An, B Tang, X. Zheng, J. Zhou, F. Dong, S. Xu, Y. Wang, B. Zhao, and W. Xu, J. Phys. Chem. C 112 (2008) 15176.         [ Links ]

11. B. Tang, J. An, X. Zheng, S. Xu, D. Li, J. Zhou, B. Zhao, and W. Xu, J. Phys. Chem. C 112 (2008) 18361.         [ Links ]

12. J. Roh, J. Yi, and Y. Kim, Y, Langmuir 26 (2010) 11621.         [ Links ]

13. R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J. G. Zheng, Science 294 (2001) 1901.         [ Links ]

14. A.R. Roosen, and W.C. Carter, Physica A 261 (1998) 232.         [ Links ]

15. D.S. Kilin, O.V Prezhdo, and Y. Xia, Chem. Phys. Lett. 458 (2008)113.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License