SciELO - Scientific Electronic Library Online

 
vol.58 issue1Algorithm to compute the electric field gradient tensor in ionic crystalsComputer simulation of the energy dynamics of a sinusoidally perturbed double sine-Gordon equation: an application to the transmission of wave signals author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.58 n.1 México Feb. 2012

 

Investigación

 

Natural convection and surface thermal radiation in a tilted open shallow cavity

 

J.F. Hinojosa Palafox

 

University of Sonora, Hermosillo, Sonora, México, Blvd. Rosales y Luis Encinas s/n, 83000, e–mail: fhinojosa@iq.uson.mx

 

Recibido el 19 de septiembre de 2011.
Aceptado el 2 de diciembre de 2011.

 

Abstract

In this paper the numerical calculations of heat transfer by natural convection and surface radiation in a tilted open shallow cavity are presented. The cavity maintains the opposite wall to the aperture at a constant temperature while the remaining walls are adiabatic. The results in the steady state are obtained for a Rayleigh number range from 105 to 107, inclination angles from 45° to 135° and aspect ratios equal to 2 and 4. It was found that the exchange of thermal radiation between walls is considerably more relevant that the convective phenomenon for an inclination angle of 135°. Oscillations in the convective Nusselt number were observed for inclination angles of 45° (AR=4) and 90° (AR of 2 and 4) caused by the formation of thermal plumes in the bottom adiabatic wall that travel and mix with the thermal layer of the hot wall.

Keywords: Shallow open cavity; natural convection; thermal radiation.

 

PACS: 44.25.+f; 44.40.+a

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. P. Le Quere, J.A Humphrey, and F.S. Sherman, Numer. Heat Tr. 4 (1981)249.         [ Links ]

2. F. Penot, Numer. Heat Tr. 5 (1982) 421.         [ Links ]

3. Y.L. Chan and C.L. Tien, Numer. Heat Tr. 8 (1985) 65.         [ Links ]

4. Y.L. Chan and C.L. Tien, Int. J. Heat Mass Transfer 28 (1985) 603.         [ Links ]

5. J.A. Humphrey and W.M. To, Int. J. Heat Mass Transfer 29 (1986) 593.         [ Links ]

6. M. Miyamoto, T.H. Kuehn, R.J. Goldstein, and Y. Katoh, Numer. Heat Tr. A–Appl. 15 (1989) 411.         [ Links ]

7. K. Vafai and J. Ettefagh, Int. J. Heat Mass Transfer, 33 (1990) 2311.         [ Links ]

8. K. Vafai and J. Ettefagh, Int. J. Heat Mass Transfer 33 (1990) 2329.         [ Links ]

9. J.L. Lage, J.S. Lim, and A. Bejan, J. Heat Trans–TASME 114 (1992) 479.         [ Links ]

10. D. Angirasa, M.J. Pourquie, and F.T. Nieuwstadt, Numerical Heat Transfer Part A 22 (1992) 223.         [ Links ]

11. C. Balaji and S.P. Venkateshan, Int. J. Heat Fluid Flow 15 (1994) 317.         [ Links ]

12. C. Balaji and S.P. Venkateshan, Int. J. Heat Fluid Flow 16 (1995) 139.         [ Links ]

13. A.A. Mohamad, Numer. Heat Tr. A–Appl. 27 (1995) 705.         [ Links ]

14. D. Angirasa, J.G. Eggels, and F.T. Nieuwstadt, Numer. Heat Tr. A–Appl. 28 (1995) 755.         [ Links ]

15. A.H. Abib and Y. Jaluria, Int. J. Heat Mass Transfer 38 (1995) 2489.         [ Links ]

16. I. Sezai and A.A. Mohamad, Int. J. Numerical Methods Heat Fluid Flow 8 (1998) 800.         [ Links ]

17. K. Khanafer and K. Vafai, Int. J. Heat Mass Transfer 43 (2000) 4087.         [ Links ]

18. K. Khanafer and K. Vafai, Int. J. Heat Mass Transfer, 45 (2002) 2527.         [ Links ]

19. K. Khanafer, K. Vafai, and M. Lighstone, Int. J. Heat Mass Transfer 45 (2002)5171.         [ Links ]

20. O. Polat and E. Bilgen, Int. J. Therm. Sci. 41 (2002) 360.         [ Links ]

21. O. Polat and E. Bilgen, Int. J. Heat Mass Transfer 46 (2003) 1563.         [ Links ]

22. S.N. Singh and S.P. Venkateshan, Int. J. Therm. Sci. 43 (2004) 865.         [ Links ]

23. E. Bilgen and H. Oztop, Int. J. Heat Mass Transfer 48 (2005) 1470.         [ Links ]

24. J.F. Hinojosa, R.E. Cabanillas, G. Alvarez, and C.A. Estrada, Int. Commun. Heat Mass 32 (2005) 1184.         [ Links ]

25. J.F. Hinojosa, R.E. Cabanillas, G. Alvarez, and C.A. Estrada, Numer. Heat Tr. A–Appl. 48 (2005) 179.         [ Links ]

26. J.F. Hinojosa, G. Alvarez, and C.A. Estrada, Rev. Mex. Fis. 52 (2006) 111.         [ Links ]

27. H. Nouaneguea, A. Muftuoglua, and E. Bilgen, Int. J. Heat Mass Transfer 51 (2008) 6054.         [ Links ]

28. A. Koca, Int. Commun. Heat Mass 35 (2008) 1385.         [ Links ]

29. A.A. Mohamad, M. El–Ganaoui, and R. Bennacer, Int. J. Therm. Sci. 48 (2009) 1870.         [ Links ]

30. S.K.S. Boetcher and E.M. Sparrow, Int. J. Heat Mass Transfer 52 (2009) 3850.         [ Links ]

31. J.F. Hinojosa and J. Cervantes de Gortari, Heat Mass Transfer 46 (2010) 595.         [ Links ]

32. M.A. Hossain, S. Asghar and R.S.R. Gorla, Int. J. Numerical Methods Heat Fluid Flow 20 (2010) 759.         [ Links ]

33. A.A. Mohamad and A. Kuzmin, Int. J. Heat Mass Transfer, 53 (2010) 990.         [ Links ]

34. A. Andreozzi and O. Manca, Numer. Heat Tr. A–Appl., 57 (2010) 453.         [ Links ]

35. J.O. Juárez, J.F. Hinojosa, J.P. Xaman, and M. Pérez, Int. J. Therm. Sci., 50 (2011)2184.         [ Links ]

36. M. Modest, Radiative Heat Transfer (McGraw–Hill, New York, USA, 1993).         [ Links ]

37. P.H. Gaskell and A.K.C. Lau, Int. J. Numerical Methods Fluids 8 (1988)617.         [ Links ]

38. J.P. Van Doormaal and G.D. Raithby, Numer. Heat Tr. 7 (1984) 147.         [ Links ]

39. H.L. Stone, J. Numer. Analysis 5 (1968) 530.         [ Links ]

40. A. Sanchez and T. Smith, J. Heat Trans–T ASME 114 (1992) 465–472.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License