SciELO - Scientific Electronic Library Online

vol.57 suppl.1Design and construction of an extended range bonner spectrometer author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.57  suppl.1 México Feb. 2011


Study of deposited energy in lung tissue from radon's progeny calculated by Monte Carlo


A. Ángelesa and G. Espinosab


a Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera México–Toluca, La Marquesa, Ocoyoacac, 52750, Estado de México.

b Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20364, México D.F., 01000, México.


Recibido el 10 de marzo de 2010
Aceptado el 31 de agosto de 2010



Because the deposited 222Rn progeny distribution in lung airways, these sources can contribute hardly to critical cells absorbed dose in neighbourhood of alpha track by the alpha particles from 218Po and 214Po. According to epidemiological data [1], lung cancers are primarily bronchogenic and mainly originate in the first five airway generations of the bronchial tree. Generally for deposited energy calculations, uniform deposit in source layers and the whole layers as sources has been considerated too. Discretional point deposits in the diferent and most important bronqui (BB) and bronchial (bb) layers for main generations is a more realistic case. Because that facts we have calculated the average deposited energy by Monte Carlo in the most important different target cell layers for the main BB and bb branch generations considering the radioactive 222Rn progeny puntual deposit in the source epithelium walls, from this location, It irradiate the neighbor cells in all directions.

Keywords: Radon; absorbed dose; bronchial; bronchiolar; secretory cell; basal cell.



Debido a la distribución de la progenie del 222Rn en las vías aéreas del pulmón, estas fuentes contribuyen importantemente a la dosis absorbida en la vecindad de la trayectoria de las partículas alfa emitidas por el 218Po y el 214Po. Conforme a datos epidemiológicos, el cáncer de pulmón es principalmente broncogénico y se genera principalmente en las primeras cinco generaciones del árbol bronquial. Para realizar los cálculos de energía depositada generalmente es considerado el depósito uniforme de las fuentes en las capas celulares y las capas mismas completas como la fuente también. Un caso más real es el depósito puntual y discreto en los diferentes y más importantes capas bronquiales (BB) y bronquiolares (bb). Tomando en cuenta lo anterior hemos calculado la energía promedio depositada en las mas importantes capas celulares blanco en las principales generaciones bronquiales y bronquiolares considerando el deposito puntual de la progenie del 222Rn en la pared epitelial de las capas celulares fuente, desde su ubicación el material fuente irradia las células vecinas en todas direcciones.

Descriptores: Radon; absorbed dose; bronchial; bronchiolar; secretory cell; basal cell.


PACS: 87.10.Rt





The authors wish to thank to J.I. Golzarri from IFUNAM for his technical help. This paper was partially supported by UNAM–DGAPA–PAPIITIN101910.



1. V.I. Beir, Health effects of exposure to radon (National Academic Press. Washington 1999).         [ Links ]

2. ICRP 66: Human Respiratory Tract Model for Respiratory Protection, International Commission on Radiological Protection (May, 1994)        [ Links ]

3. C.J. Tung, C.S. Liu, J.P Wang, and S.L. Chang, Applied Radiation and Isotopes 61 (2004) 739.         [ Links ]

4. J.A. Simmonds and S.R. Richards, Health Physics 46 (1984) 607.         [ Links ]

5. E.R. Weibel, Morphometry of the human lung (Academic Press Inc. New York, 1963).         [ Links ]

6. ICRP 26: Recommendations of the International Commisionon Radiological Protection, International Commission on Radiological Protection (1971).         [ Links ]

7. ICRP 56: Agedependent Doses to Members of the Public from Intake of Radionuclides, Part 1, International Commission on Radiological Protection (April, 1989).         [ Links ]

8. ICRP 60: 1990 Recommendations of the International Commission of Radiological Protection, International Commission on Radiological Protection (1991).         [ Links ]

9. International Commission on Radiation Units and measurements, Radiation Quantities and Units ICRU Report 33 (Bethesda, MD, 1983).         [ Links ]

10. International Commission on Radiation Units and measurements, Fundamental Quantities and Units for Ionizing Radiation ICRU Report 60 (Bethesda, Maryland USA, 1998).         [ Links ]

11. National Institute of Standards and Technology, physics laboratory (Astar software, USA 2009).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License