SciELO - Scientific Electronic Library Online

 
vol.57 issue5Soluciones exactas a la ecuación de Schrodinger para una fibra óptica quiralStudy of bone cells by quantitative phase microscopy using a Mirau interferometer author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.57 n.5 México Oct. 2011

 

Investigación

 

Viscosity enhancement in dilute magnetorheological fluids through magnetic perturbations

 

F. Donado*, U. Sandoval** and J.L. Carrillo**

 

*Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca 42184, Pachuca, México, e-mail: fernando@uaeh.edu.mx

**Instituto de Física de la Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Puebla, México.

 

Recibido el 7 de febrero de 2011;
aceptado el 8 de agosto de 2011

 

Abstract

The influence of a sinusoidal magnetic field on the effective viscosity of a magnetorheological dispersion in the low particle concentration regime is studied experimentally. When a sinusoidal magnetic field of low amplitude, conceived as perturbation, is applied transversally to the static field, a significant enhancement occurs in the measured effective viscosity. The magnitude of changes depends on a number of factors such as the amplitude and frequency of the perturbation, the particle concentration, the application time of the fields, and the shear rate. It has also been found that the behavior of the effective viscosity as a function of frequency presents a critical behavior. Therefore, an average Mason number is proposed, whose behavior as a function of frequency is similar to that shown by the effective viscosity.

Keywords: Magnetorheological fluid; effective viscosity; magnetic perturbations.

 

Resumen

El efecto de un campo magnético senoidal sobre la viscosidad efectiva de una dispersión magneto-reológica en el régimen de baja concentración de partículas es estudiado experimentalmente. Cuando un campo magnético senoidal de baja amplitud, considerado como perturbación, es aplicado transversalmente al campo esttico, ocurre un significativo incremento en la viscosidad efectiva. La magnitud de los cambios depende de factores tales como la amplitud y la frecuencia de la perturbación, la concentración de partículas, el tiempo de aplicación de los campos, y la rapidez de corte. Se ha encontrado que el comportamiento de la viscosidad efectiva como función de la frecuencia presenta un comportamiento crítico. Por lo tanto, un numero de Mason promedio es propuesto, cuyo comportamiento es similar al mostrado por la viscosidad efectiva.

Descriptores: Fluido magneto-reológico; viscosidad efectiva; perturbaciones magnéticas.

 

PACS: 83.80.Gv; 45.70.Qj; 83.60.Np

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The study was supported financially by CONACyT Mexico, Grant No. 80629. U. Sandoval acknowledges the CONACyT fellowship.

 

Referencias

1. D. Kittipoomwong and D. Klingenberg, J. Rheol. 49(6) (2005) 1521.         [ Links ]

2. R. Tao, J. Phys.: Condens. Matter. 13 (2001) R979.         [ Links ]

3. J. Vicente, M.T. Lopez-Lopez, J.D.G. Duran and F. Gonzalez-Caballero, Rheol. Acta 44 (2004) 94.         [ Links ]

4. G.K. Auernhammer, D. Collin, and P. Martinoty, J. Chem. Phys. 124 (2006) 204907.         [ Links ]

5. P. Domínguez-García, S. Melle, and M.A. Rubio, J. Colloid Interface Sci. 333 (2009) 221.         [ Links ]

6. A.G. Olab y A. Grunwald, Materials and Design 28 (2007) 2658.         [ Links ]

7. http://www.lord.com/Home/MagnetoRheologicalMRFluid/tabid/3317/Default.aspx        [ Links ]

8. T. Gerlach, J. Ehrlich, and H. Bse, Journal of Physics: Conference Series 149 (2009) 012049.         [ Links ]

9. A. L. Browne, J. D. Mccleary, C.S. Namuduri, and S.R. Webb, Journal of Intelligent Material Systems and Structures 20 (2009)723.         [ Links ]

10. X.Z. Zhang, X.L. Gong, P.Q. Zhang, and Q.M. Wang, J. Appl. Phys. 96 (2004) 2359.         [ Links ]

11. P. Domínguez-García, S. Melle, J.M. Pastor, and M.A. Rubio, Phys. Rev. E 76 (2007) 051403.         [ Links ]

12. E.M. Furst and A.P. Gast, Phys. Rev. E. 62 (2000) 6916.         [ Links ]

13. J.E. Martin, Phys. Rev. E. 63 (2000) 011406.         [ Links ]

14. S. Cutillas and J. Liu, Phys. Rev. E64 (2001) 011506.         [ Links ]

15. F. Donado, U. Sandoval, and J.L. Carrillo, Phys. Rev. E 79 (2009) 011406.         [ Links ]

16. J.E. Martin, K.M. Hill, and C.P. Tigges, Phys. Rev. E59 (1999) 5676.         [ Links ]

17. M. Chaker, N. Breslin and J. Liu, Proc. 7th. Int. Conf. on ER Fluids and MR Suspensions Ed. R Tao (World Scientific, Singapore, 2000) pag. 366        [ Links ]

18. U. Sandoval, J.L. Carrillo, and F. Donado, Rev. Mex. Fis. E 56(1) (2010) 123.         [ Links ]

19. R.G. Larson, The Structure and Rheology of Complex Fluids, 1st Ed. (Oxford University Press, New York, 1999) Chap. 6.         [ Links ]

20. S. Melle, and J.E. Martin, J. Chem. Phys. 118 (2003) 9875.         [ Links ]

21. O. Volkova, S. Cutillas, and G. Bossis, Phys. Rev. Lett. 82 (1999) 233.         [ Links ]

22. S. Melle, O.G. Calderon, M.A. Rubio, and G.G. Fuller, Phys. Rev.E68 (2003) 041503.         [ Links ]

23. J.R. Reitz, F.J. Milford, and R.W. Christy, Fundations of Electromagnetics Theory, 3nd. Ed. (Addison-Wesley Publishing Company, Massachusetts, 1979) Chap. 8.         [ Links ]

24. A. Cebers and M. Ozols, Phys. Rev.E 73 (2006) 021505.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License