SciELO - Scientific Electronic Library Online

 
vol.54 suppl.2Using the MAST virtual observatory to study light profiles in elliptical galaxiesAggregation behavior and rheology of culture broths of Rhodosorus marinus author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.54  suppl.2 México Nov. 2008

 

First–principles calculation of the band gap of AlxGa1–xN and InxGa1–x N

 

Roberto Núñez–Gonzálezª, Armando Reyes–Serratob, Alvaro Posada–Amarillasc and Donald H. Galvánd

 

ª Departamento de Matematicas, Universidad de Sonora, e–mail: ronunez@gauss.mat.uson.mx

b Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, e–mail: armando@cnyn.unam.mx

c Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5–088, 83190 Hermosillo, Sonora, México, e–mail: posada@cajeme.cifus.uson.mx

d Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, e–mail: donald@cnyn.unam.mx

 

Recibido el 23 de mayo de 2008
Aceptado el 15 de junio de 2008

 

Abstract

Ab–initio calculations of the band gap variation of AlxGa1–xN and InxGa1–x N ternary compounds were carried out using the Full–Potential Linearized Augmented Plane Waves (FLAPW) method, within the Density Functional Theory (DFT). These nitrides were modeled in their wurtzite structure using the supercell method, for concentrations x = 0, 0.25, 0.50, 0.75 and 1.0. To optimize the cell parameters of the binary compounds we used the PBE96 (Perdew et al., Phys. Rev. Lett. 77 (1996) 3865) exchange–correlation functional. For the band structure calculations, we used both PBE96 and EV93 (Engel et al., Phys. Rev. B 47 (1993) 13164) exchange–correlation functionals. We considered experimental and calculated (with PBE96) lattice parameters to work out the electronic properties. We found that the fundamental gap is direct in all compounds. The calculation with EV93 functional gives a better band gap estimation for binary nitrides. The bowing parameter was also estimated obtaining the values b = 0.74 eV for AlxGa1–xN and b = 2.12 eV for InxGa1–x N.

Keywords: Ab–initio calculations; band structure; bowing parameter; FLAPW; nitrides.

 

Resumen

En este trabajo se realizaron cálculos de primeros principios de la variación del ancho de banda prohibido en los compuestos ternarios AlxGa1–xN e InxGa1–x N, utilizando el Método Linealizado de Ondas Planas Aumentadas con Potencial Completo (FLAPW), dentro del marco de la Teoría del Funcional de la Densidad (DFT). Los nitruros fueron modelados en una estructura tipo wurzita utilizando el método de supercelda, y considerando las concentraciones x = 0, 0.25, 0.50, 0.75 y 1.0. Para la optimización de los parámetros de red se utilizó el potencial de correlación–intercambio PBE96 (Perdew et al., Phys. Rev. Lett. 77 (1996) 3865). Para el cálculo de la estructura de bandas de energía se utilizaron los funcionales PBE96 y EV93 (Engel et al., Phys. Rev. B 47 (1993) 13164). Se consideraron parámetros de red experimentales y calculados (con PBE96) para los cálculos de las propiedades electrónicas. Nuestros cálculos indican que la banda prohibida fundamental es directa en estos compuestos. Los cálculos con el funcional EV93 dan como resultado una mejor estimación de los anchos de las bandas prohibidas de los compuestos binarios. Calculamos el parámetro de curvatura, obteniendo los valores b = 0.74 eV para AlxGa1–xN y b = 2.12 eV para InxGa1–x N.

Descriptores: Cálculos Ab–initio; estructura de bandas; parámetro de curvatura; FLAPW; nitruros.

 

PACS: 31.15.A; 71.15.Mb; 71.15.Ap; 71.20.Nr

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was partially supported by project DGAPA–IN115401 and PAPIIT IN107508. RNG is grateful to CONACYT for a PhD scholarship, to Dr. Peter Blaha for fruitful comments about Engel–Vosko approximation to exchange–correlation functional and grateful to Dr. Mario Farías and Dr. Oscar Contreras for a careful reading of the manuscript and valuable recommendations.

 

References

1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10 (1992) 1237.        [ Links ]

2. Properties of Group–III Nitrides, edited by J.H. Edgar, EMIS Datareviews Series (IEE, London, 1994).        [ Links ]

3. C. Stampfi and C.G. van de Walle, Phys. Rev. B 59 (1999) 5521.        [ Links ]

4. J. Wu et al., Appl. Phys. Lett. 80 (2002) 3967.        [ Links ]

5. F. Bechstedt and J. Furthmüller, J. Crystal Growth 246 (2002) 315.        [ Links ]

6. R. Singh, D. Doppalapudi, T.D. Moustakas, and L.T. Romano, Appl. Phys. Lett. 70 (1997) 1089.        [ Links ]

7. N.A. El–Masry, E.L. Piner, S.X. Liu, and S.M. Bedair, Appl. Phys. Lett. 72 (1998) 40.        [ Links ]

8. Y. Sato and S. Sato, Jpn. J. Appl. Phys., Part 1 36 (1997) 4295.        [ Links ]

9. P. Hohenberg and W. Kohn, Phys. Rev. B 136 (1964) 864;         [ Links ] W. Kohnand L.J. Sham, Phys. Rev. A 140 (1965) 1133.        [ Links ]

10. W. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev. B 24 (1981) 864.        [ Links ]

11. P. Blaha, K. Schwarz, and J. Luitz, WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria, 1999) ISBN 3–9501031–0–4.        [ Links ]

12. R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61 (1989) 689.        [ Links ]

13. J.P. Perdew, in Electronic Structure of Solids '91, edited by P. Ziesche and H. Eschrig (Akademic Verlag, Berlin, 1991) p. 11.        [ Links ]

14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.        [ Links ]

15. E. Engel and S.H. Vosko, Phys. Rev. B 47 (1993) 13164.        [ Links ]

16. P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50 (1994) 7279.        [ Links ]

17. R.W.G. Wyckoff, Crystal Structures, 2nd. Edition (Krieger, Malabar, 1986).        [ Links ]

18. P. Villars and L.D. Calvert, Pearson 's Handbook of Crystallo–graphic Data for Intermetallic Phases, Volume 3.        [ Links ]

19. M. van Schilfgaarde, A. Sher, and A.B. Chen, J. Crystal Growth 178 (1997) 8.        [ Links ]

20. L.K. Teles, J. Furthmüler, L.M.R. Scolfaro, J.R. Leite, and F. Bechstedt, Phys. Rev. B 62 (2000) 2475.        [ Links ]

21. F.D. Murnaghan, Proc. Natl. Acad Sci. USA 30 (1944) 5390.        [ Links ]

22. J.E. Bernard and Alex Zunger, Phys. Rev. B 36 (1987) 3199.        [ Links ]

23. M. Ferhat and F. Bechstedt, Phys. Rev. B 65 (2002) 075213.        [ Links ]

24. S.R. Lee et al., Appl. Phys. Lett. 74 (1999) 3344.        [ Links ]

25. M. Goano et al., J. Appl. Phys. 88 (2000) 6476.        [ Links ]

26. J. Fritsch, O.F. Sankey, K.E. Schmidt, and J.B. Page, J. Phys. Condens. Matter 11 (1999) 2351.        [ Links ]

27. Z. Dridi, B. Bouhafs, and P. Ruterana, Phys. Stat. Sol. (c) 1 (2002) 315;         [ Links ] Z. Dridi, B. Bouhafs, and P. Ruterana, Semicond. Sci. Technol. 18 (2003) 850.        [ Links ]

28. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94 (2003) 3675.        [ Links ]

29. K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46 (1975) 3432.        [ Links ]

30. S. Nakamura, The Blue Laser Diode GaN Based Light Emitters and Lasers (Springer–Verlag, Berlin, 1997).        [ Links ]

31. L.K. Teles, J. Furthmüler, L.M.R. Scolfaro, J.R. Leite, and F. Bechstedt, Phys. Rev. B 63 (2002) 085204.        [ Links ]

32. Yen–Kuang Kuo, Wen–Wei Lin, and Jiann Lin, Jpn. J. Appl. Phys. 40 (2001) 3157.        [ Links ]

33. M. Ferhat, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett. 80 (2002) 1394.        [ Links ]

34. Bo–Ting Liou, Cheng–Yang Lin, Sheng–Horng Yen, and Yen–Kuang Kuo, Optics Communications 249 (2005) 217.        [ Links ]

35. C. Caetano, L.K. Teles, M. Marques, A. Dal Pino Jr., and L. G. Ferreira, Phys. Rev. B 74 (2006) 045215.        [ Links ]

36. C. Persson, R. Ahuja, A. Ferreira da Silva, and B. Johansson, J. Phys.: Condens. Matter 13 (2001) 8945.        [ Links ]

37. C. Persson, R. Ahuja, and B. Johansson, Phys. Rev. B 64 (2001) 033201–1.        [ Links ]

38. A. Mokhtari and H. Akbarzadeh, Physica B 324 (2002) 305.        [ Links ]

39. M. Quintero, C. Rincon, and P. Grima, J. Appl. Phys. 65 (1989) 2739.        [ Links ]

40. E. Orhan, S. Jobic, R. Brec, R. Marchand, and J.–Y Saillard, J. Mater. Chem. 12 (2002) 2475.        [ Links ]

41. R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures (VCH Publishers, Inc. New York, 1988) ISBN 0–89573–709–4.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License