SciELO - Scientific Electronic Library Online

 
vol.54 issue4Design of a 1-V 90-nm CMOS adaptive LNA for multi-standard wireless receivers author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.54 n.4 México Aug. 2008

 

Instrumentación

 

Controlled Lagrangian approach to the stabilization of the inverted pendulum system

 

C. Aguilar–Ibañez*, O. Octavio Gutierrez F., and H. Sossa A.

 

Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esq. Miguel Othón de M. Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, A.P. 75476 México, D.F. 07738, México FAX: +(52) 55 5586–2936

 

* Corresponding author:
caguilar@cic.ipn.mx.

 

Recibido el 7 de diciembre de 2006
Aceptado el 4 de junio de 2008

 

Abstract

A controlled Lagrangian approach is presented for the stabilization of an inverted pendulum mounted on a cart. The stabilization strategy consists in forcing the closed–loop system to behave as an Euler–Lagrange system, with a fixed inertia matrix. For carrying it out, it is necessary to adequately shape the potential and kinetic energies of the closed–loop system. The idea behind this procedure is to make an energy–balance between the overall energy of the pendulum system and the dissipation energy produced by the action of the control force. The resulting closed–loop system is locally asymptotically stable about its unstable equilibrium point with a very large attraction domain.

Keywords: Euler–Lagrange system, energy balance, Lyapunov method.

 

Resumen

En este trabajo se presenta el problema de la estabilización de un péndulo invertido sobre un carro mediante el lagrangiano controlado. La estrategia de estabilización consiste en forzar al sistema en lazo cerrado a que se comporte como un sistema Euler–Lagrange, donde la matriz característica de inercia es constante. Para lograr esto, es necesario modelar adecuadamente las energías potencial y cinética del sistema en lazo cerrado. La idea fundamental de este procedimiento es hacer un balanceo de energía entre la energía de todo el sistema y la energía disipada mediante los movimientos horizontales del carro. El sistema obtenido en lazo cerrado es localmente estable asintóticamente alrededor de su punto de equilibrio inestable, con un dominio de atracción muy grande.

Descriptores: Sistema Euler–Lagrange, balanceo de energía, método de Lyapunov.

 

PACS: 45.20.Jj

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This research was supported by CIC–IPN and by the Secretaria de Investigación y Posgrado of the Instituto Politécnico Nacional (SIP–IPN) under research grant 20082694. Octavio Gutierrez F. is a scholarship holder of the CONACYT.

 

References

1. A.M. Bloch, D.E. Chang, N.E. Leonard, and J.E. Marsden, IEEE Trans. on Auto. Control 46 (2001) 1556.        [ Links ]

2. G. Blankenstein, R. Ortega, and A. van der Schaft, International Journal Control 75 (2002) 645.        [ Links ]

3. D. Auckly and L. Kapitanski, SIAM J Control Optim 41 (2002) 1372.        [ Links ]

4. A.M. Bloch, N.E Leonard, and J.E. Marsden, IEEE Trans Automatic Control 45 (2000) 2253.        [ Links ]

5. C.C. Chung, J. Hauser, Automática 36 (2000) 287.        [ Links ]

6. I. Fantoni and R. Lozano, Nonlinear control for the underactuacted mechanical system (Springer–Verlag, London 2002).        [ Links ]

7. K.J. Astrom and K. Furuta, Automática 36 (2000) 287.        [ Links ]

8. A.S. Shiriaev A.S, A. Pogromsky, H. Ludvigsen, and O. Egeland, International Journal of Robust and Nonlinear Contol 10 (2000)283.        [ Links ]

9. H.S. Ramirez, S. K. Agrawal, Differential flat system (Marcel Dekker, New York, 2004).        [ Links ]

10. D.E. Chang, A.M. Bloch, N.E. Leonard, J.E. Marsden, and C.A. Woolsey, ESAIM: Control, Optimisation, and Calculus of Variations 8 (2002) 393.        [ Links ]

11. C. Aguilar–Ibañez, O. Gutierrez–F. , M. S. Suarez, and C. Lyapunov, Nonlinear Dyanamics 40 (2005) 367.        [ Links ]

12. Ö.T. Altinöz, International Journal of Computer and Information Science and Engineering 1 (4).        [ Links ]

13. O. Fujita and K. Uchimura, Proceedings of the 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing (Iizuka, Japan, August 1–7, 1994) 271.        [ Links ]

14. Y. Ledeneva and C.A. REYES G. 5th Mexican International Conference on Artificial Intelligence (MICAI–06), (LNAI 4293, México, Springer–Verlag, 2006. ISSN 0302–9743) 146.        [ Links ]

15. Y. Ledeneva and C.A. REYES G. Proceedings of 4th International Conference on Informatics in Control, Automation and  Robotics (ICINCO) (France, 2007) 398.        [ Links ]

16. H.K. Khalil, Nonlinear Systems, (Prentice Hall, 2nd Edition, New Jersey, 1996).        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License