SciELO - Scientific Electronic Library Online

 
vol.48 issue6Simple technique for root locus plottingCiclo de Curzon y Ahlborn para un gas de van der Waals author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.48 n.6 México Dec. 2002

 

Enseñanza

 

The Wigner function in paraxial optics I. Matrix methods in Fourier optics

 

Roberto Ortega-Martínez1*, Carlos J. Román-Moreno1, Ana Leonor Rivera2

 

1 Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, 04510 México, D.F., México *roberto@aleph.cinstrum.unam.mx

2 Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.

 

Recibido el 19 de noviembre de 2001.
Aceptado el 10 de junio de 2002.

 

Abstract

The paraxial regime of scalar wave optics has the same structure as non-relativistic quantum mechanics, with wavelength taking the place of the Planck constant. The Wigner function is a central tool to explore the phase space of a system; in optics, moreover, it can be produced by purely optical means. In this first part, we present a matrix-based formalism for the study of paraxial optical systems, and apply it to the description of a setup that, as will be seen in the second part, produces the Wigner function.

Keywords: Wave propagation; Fourier optics; space phase measurements.

 

Resumen

El régimen parxial de la óptica ondulatoria escalar tiene la misma estructura que la mecánica cuántica no relativista, donde la longitud de onda juega el papel de la constante de Planck. La función de Wigner es una herramienta central para explorar el espacio fase de un sistema; además, en óptica, se puede producir con medios exclusivamente ópticos. En esta primera parte, presentamos un formalismo matricial para el estudio de los sistemas ópticos parxiales y lo aplicamos en la descripción de un arreglo, que como veremos en la segunda parte, produce la función de Wigner.

Descriptores: Propagación de ondas; óptica de Fourier; mediciones de fase espacial.

 

PACS: 42.25.Bs; 42.30.Kq; 42.50.Dv

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors would like to thank Kurt B. Wolf for having unconditionally shared with us his vast knowledge and Neil Bruce (CCADET-UNAM) and Eugenio Ley Koo for the review of the text. C.J. Román had support from DGAPA-UNAM projects IN106595 and IN104597. Support of projects IN104198 Óptica Matemática and 1N108900 Detección Ultrarrápida y Ultrasensible by the Dirección General de Asuntos del Personal Académico, UNAM, are gratefully acknowledged.

 

References

1. E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749;         [ Links ] J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949) 99;         [ Links ] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill (Electrical and Computer Engineering Series, 2nd Edition, 1996), chapter 2, p30.         [ Links ]

2. H. Bartelt and K.-H. Brenner, The Wigner function an alternative signal representation in optics, Israel J. Techn. 18 (1980) 260;         [ Links ] H.O. Bartelt, K.-H. Brenner and A. Lohmann, The Wigner distribution function and its optical production, Opt. Comm. 32 (1980) 32;         [ Links ] K.-H. Brenner and A. H. Lohmann, Wigner distribution function display of complex 1D signals, Opt. Comm. 42 (1982)310.         [ Links ]

3. This distribution results from a uniformly-weighted superposition of plane waves traveling in the forward half sphere of directions, and interfering constructively at the image point.

4. R. Simon and K.B. Wolf, Structure of the set of paraxial optical systems, Journal of the Optical Society of America A 17 (2000) 342.         [ Links ]

5. O. Castaños, E. López Moreno and K.B. Wolf, "Canonical transforms for paraxial wave optics." Lie Methods in Optics, J. Sánchez-Mondragón and K.B. Wolf, Eds., Lecture Notes in Physics, Vol. 250 (Springer Verlag, Heidelberg, 1986), Chapter 5, p. 159.         [ Links ]

6. M. Moshinsky and C. Quesne, "Oscillator Systems," in Proceedings of the 15th Solvay Conference in Physics (1970) (Gordon and Breach, New York, 1974); ibid., J. Math. Phys 12 (1971) 1772; ibid., J. Math. Phys 12 (1971) 1780;         [ Links ] M. Moshinsky, SIAMJ. Appl. Math. 25 (1973) 193.         [ Links ]

7. K.B. Wolf, Integral Transforms in Science and Engineering (Plenum Publ. Corp., New York, 1979), Chapters 9 and 10.         [ Links ]

8. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999), 7th ed., p. 888.         [ Links ]

9. H.M. Ozaktas, M.A. Kutay, and D. Mendlovic, Advances in Imaging and Electron Physics, edited by P.W. Hawkes (Academic Press, San Diego, 1999), Vol. 106, p. 239.         [ Links ]

10. E.C.G. Sudarshan, N. Mukunda and R. Simon, Opt. Acta 32 (1985) 855;         [ Links ] K.B. Wolf and G. Krotzsch, "El problema de las tres lentes," Rev. Mex. Fís. submitted (2000).         [ Links ]

11. G.W. Forbes, V.Í. Man'ko, H.M. Ozaktas, R. Simon, K.B. Wolf, J. Opt. Soc. Am. A 17 (2000) 2272.         [ Links ]

12. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed., p. 148.         [ Links ]

13. O.N. Stavroudis, The Optics of Rays, Wavefronts and Caustics (Academic Press, 1972), p. 95.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License