SciELO - Scientific Electronic Library Online

vol.58 issue1On the Antioxidant Activity of the Ortho and Meta Substituted Daidzein Derivatives in the Gas Phase and Solvent EnvironmentCamphor Sulfonic Acid-hydrochloric Acid Codoped Polyaniline/polyvinyl Alcohol Composite: Synthesis and Characterization author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X


PEYGHAN, Ali Ahmadi  and  NOEI, Maziar. A Theoretical Study of Lithium-intercalated Pristine and Doped Carbon Nanocones. J. Mex. Chem. Soc [online]. 2014, vol.58, n.1, pp.46-51. ISSN 1870-249X.

The energetic, geometric, and electronic structure of Li-adsorbed pristine, B- and N-doped carbon nanocones (B- and N-CNCs) were investigated by means of density functional theory. It was found that Li atom is strongly adsorbed above the center of pentagonal ring of the pristine CNC with the adsorption energy of −1.08 eV (at B3LYP/6-31G(d)) along with the charge transfer from Li to the CNC. After this process, the semiconductive CNC is transformed to an n-type one, so that its HOMO-LUMO energy gap (Eg) is reduced from 2.51 to 0.71 eV (at B3LYP/6-31G(d)). Doping semiconductive CNC with B or N atom also creates a p- or n-type semiconductive material, resulting in an increased conductance. B-doping improves the Li adsorption on the CNC, while N-doping hinders this process. It seems that Li atom acts as an electron-donor agent with n-type effect, and therefore, its adsorption on the B-CNC somewhat compensates the p-type effect of B-doping. On the contrary, the adsorption process on the N-CNC moderately promotes the n-type effect of N-doping, leading to more reduction in the Eg value.

Keywords : Nanostructures; Adsorption; Density functional theory; Lithium battery.

        · abstract in Spanish     · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License