SciELO - Scientific Electronic Library Online

 
vol.54 issue3Synthesis, Solid and Solution Studies of Paraquat Dichloride Calixarene Complexes. Molecular ModellingDegradation of 4-Chlorophenol by Gamma Radiation of 137Cs and X-rays author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

Abstract

ORDONEZ-REGIL, Eduardo; GARCIA-ROSALES, Genoveva  and  GARCIA-GONZALEZ, Nidia. Spectroscopic Determination of Optimal Hydration Time of Zircon Surface. J. Mex. Chem. Soc [online]. 2010, vol.54, n.3, pp.153-156. ISSN 1870-249X.

When a mineral surface is immersed in an aqueous solution, it develops an electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO4) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and reliable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis (NAA) showed the presence of trace quantities of Dy3+, Eu3+ and Er3 in the bulk of zircon. The Dy3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 min from only one batch. Both methods showed that the zircon surface have a 16h optimal hydration time.

Keywords : Hydration; Dysprosium; Zircon; Fluorescence.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License