SciELO - Scientific Electronic Library Online

vol.11 issue5A Piecewise Linear Fitting Technique for Multivalued Two-dimensional PathsCell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423


ZHANG, Ji  and  LIU, Yu. Single Maneuvering Target Tracking in Clutter Based on Multiple Model Algorithm with Gaussian Mixture Reduction. J. appl. res. technol [online]. 2013, vol.11, n.5, pp.641-652. ISSN 2448-6736.

The measurement origin uncertainty and target (dynamic or/and measurement) model uncertainty are two fundamental problems in maneuvering target tracking in clutter. The multiple hypothesis tracker (MHT) and multiple model (MM) algorithm are two well-known methods dealing with these two problems, respectively. In this work, we address the problem of single maneuvering target tracking in clutter by combing MHT and MM based on the Gaussian mixture reduction (GMR). Different ways of combinations of MHT and MM for this purpose were available in previous studies, but in heuristic manners. The GMR is adopted because it provides a theoretically appealing way to reduce the exponentially increasing numbers of measurement association possibilities and target model trajectories. The superior performance of our method, comparing with the existing IMM+PDA and IMM+MHT algorithms, is demonstrated by the results of Monte Carlo simulation.

Keywords : Maneuvering target tracking; clutter; multiple model; multiple-hypothesis tracker; Gaussian mixture reduction.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License