SciELO - Scientific Electronic Library Online

 
vol.20 issue2Validation of a classification algorithm for identifying pharmacological interactions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingeniería, investigación y tecnología

On-line version ISSN 2594-0732Print version ISSN 1405-7743

Abstract

MENDEZ-NOVELO, Roger Iván et al. Leachate Treatment with a combined Fenton/filtration/adsorption processes. Ing. invest. y tecnol. [online]. 2019, vol.20, n.2. ISSN 2594-0732.  https://doi.org/10.22201/fi.25940732e.2019.20n2.013.

Fenton and adsorption are two of the most widely used physicochemical processes for leachates treatment. Each one separately has shown limited treatment capabilities, reaching COD removals up to 60-70%. The Fenton process oxidizes both organic and inorganic matter; nevertheless, low-density sludges are produced and hard to decant. To remove them, the filtration process could be an efficient alternative to eliminate these solids the remaining substances could be removed by means of the adsorption process. This study presents the results of a Fenton/filtration/adsorption treatment train, under the following conditions: a) Fenton: pH = 4, contact time = 60 minutes, [Fe2+]/[H2O2] = 0.6, [COD]/[H2O2] = 9; b) leachate filtered through 4 µm pore filter paper; c) adsorption was performed in a packed column with macroporous granular activated carbon. The COD removals reached 99.9%, where 90.8% was achieved with the Fenton/filtration process and 9.1% was removed by adsorption. The 95.7% of color was removed in the Fenton/filtration stage and 4.3% by adsorption. Although, the COD, BOD5, color and TSS removals from the adsorption process were lower than the Fenton/filtration process, the additional removal allows to the effluent reach the values required to meet the current Mexican Norms.

Keywords : Advanced oxidation process; landfill; activated carbon; physicochemical process; solids waste disposal.

        · abstract in Spanish     · text in English     · English ( pdf )