SciELO - Scientific Electronic Library Online

 
vol.22 issue1A model of humidity within a semi-closed greenhousePerformance of european pear ‘Shahmiveh’ grafted onto different rootstocks author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Chapingo. Serie horticultura

On-line version ISSN 2007-4034Print version ISSN 1027-152X

Abstract

ROJAS-SOLIS, Daniel; HERNANDEZ-PACHECO, Claudia E.  and  SANTOYO, Gustavo. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.). Rev. Chapingo Ser.Hortic [online]. 2016, vol.22, n.1, pp.45-58. ISSN 2007-4034.  https://doi.org/10.5154/r.rchsh.2015.06.009.

One of the main characteristics that plant growth-promoting rhizobacteria (PGPR) must have is good rhizosphere colonization. This study evaluates the ability of five PGPR separately and together (Bacillus-Pseudomonas), including four strains of Pseudomonas fluorescens (UM16, UM240, UM256 and UM270) and one of Bacillus thuringiensis (UM96), to colonize the rhizosphere of maize (Zea mays L.) plants. Additionally, the promoting effect of the bacterial consortium on green tomato (Physalis ixocarpa Brot. ex Horm.) seedlings was assessed. The results showed that the five strains analyzed are highly competent to colonize the rhizosphere, in addition to not presenting antagonism in vitro between them. The recovered strains were analyzed by means of their natural resistance to carbenicillin and by means of random amplified polymorphic DNA. Also, by assessing the growth-promoting effect of inoculating the strains together, only the combination of B. thuringiensis UM96 and P. fluorescens UM16 significantly improved the total fresh weight of the tomato seedlings and increased hypocotyl and root length. The P. fluorescens strains, separately, were the only ones that showed a beneficial effect on seedling development. The results showed that only the UM96-UM16 consortium had beneficial interaction with the plant, while separately the strains showed broad potential for colonizing the rhizosphere and promoting tomato plant growth.

Keywords : plant-bacteria interaction; bioinoculant; growth-promoting effect; seedling.

        · abstract in Spanish     · text in English | Spanish     · English ( pdf ) | Spanish ( pdf )