SciELO - Scientific Electronic Library Online

 
vol.61 issue4The Liouville theorem as a problem of common eigenfunctionsSimple algebraic method to study the effects of hydrostatic pressure on the fundamental parameters of a Schottky barrier of metal/n-GaAs author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Abstract

KRYSHTAB, T.; CADENA ARENAS, A.; KRYVKO, A.  and  PALACIOS GOMEZ, J.. La extinción primaria y el factor estático de Debye-Waller en la caracterización de níquel con textura mediante difracción de rayos X. Rev. mex. fis. [online]. 2015, vol.61, n.4, pp.272-280. ISSN 0035-001X.

The texture analysis using X-ray diffraction (XRD) implies measurement of pole figures (PFs) from the diffracted intensities considering the model of kinematical dispersion. The extinction phenomenon results in a decrease of diffracted intensity and that in turn in a decrease of pole densities (PDs). The phenomenon appears in the kinematical theory of XRD as the primary extinction and the secondary extinction to characterize the loss of intensity of kinematical dispersion. In turn, the static Debye-Waller factor is an integral characteristic of defects in crystals that is introduced in the kinematical theory of XRD and also is used in dynamical theory of XRD. In this work the correlation between the primary extinction coefficient and the static Debye-Waller factor in the case of textured nickel was determined. The value of static Debye-Waller factor was determined from the value of the calculated primary extinction coefficient. For the evaluation there were used PDs in the maxima of PFs obtained for 111 and 200 reflections with MoKα radiation, and the PDs in the maxima of PFs obtained for the first and second orders of these reflections with Cu Kα and Co Kα radiations. There were calculated the dislocation densities in grains using values of static Debye-Waller factor and the extinction coefficients. The dislocation densities calculated from these two characteristics are practically equal.

Keywords : X-ray diffraction; extinction; static factor; texture; microstructure.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License