SciELO - Scientific Electronic Library Online

 
vol.13 issue3Ethanol production by Zymomonas mobilis NRRL B-806 from enzymatic hydrolysates of Eucalyptus globulusCharacterization of sulfided W/USY catalysis and their activity in hydrodesulfurization of gas oil author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 n.3 Ciudad de México Dec. 2014

 

Catálisis, cinética y reactores

 

Efecto del hidroperóxido de cumeno sobre la desulfuración oxidativa

 

Cumena hidroperoxide effect on the oxidative desulfurization

 

M.A. Alvarez-Amparán y L. Cedeño-Caero*

 

UNICAT, Dpto. de Ingeniería Química, Fac. de Química, UNAM, 04510, México D.F.* Autor para la correspondencia. E-mail: caero@unam.mx Tel. (5255)-5622-5369, Fax 56-22-53-66.

 

Recibido 27 de mayo de 2014.
Aceptado 14 de agosto de 2014.

 

Resumen

Catalizadores con diferente contenido teórico de molibdeno (0.8, 1.0, 1.7 y 2.5 átomos de Mo/nm2) fueron preparados por impregnación húmeda con soluciones acuosas de ácido oxálico y heptamolibdato de amonio (pH=0) sobre γ -alúmina, para evaluar el desempeño del hidroperóxido de cumeno (HPC) como agente oxidante en el proceso de desulfuración oxidativa (ODS). Los catalizadores fueron caracterizados por difracción de rayos X (DRX), microscopía electrónica de barrido (SEM-EDX) y reducción a temperatura programada (TPR). La actividad catalítica se analizó en términos de los productos de oxidación de DBT y sus alquil-substituidos (4-MDBT y 4,6-DMDB T). Los resultados mostraron que el HPC exhibe alta reactividad en el proceso de ODS y que la actividad es debida a dos contribuciones: la reacción catalítica heterogénea y la reacción homogénea no catalítica, siendo esta última importante.

Palabras clave: hidroperóxido de cumeno, óxido de molibdeno, desulfuración oxidativa, dibenzotiofenos.

 

Abstract

Supported molybdenum catalysis were prepared by wet impregnation of acidic solutions of oxalic acid and ammonium heptamolibdate at pH=0 on y-alumina, with theoretical metal loadings of: 0.8, 1.0, 1.7 and 2.5 Mo atoms/nm2. The catalysts were used in the oxidative desulfurization (ODS) process in order to evaluate the catalytic performance of cumene hidroperoxide (CHP) as oxidant agent. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM-EDX) and temperature-programmed reduction (TPR). Catalytic activity results were discussed in terms of the oxidant products of DBT and its alkyl-substitued (4-MDBT and 4,6-DMDBT). Results showed high reactivity of CHP as oxidant in the ODS process and that activity is due to two contributions: the heterogeneous catalytic reaction and the homogeneous non-catalytic reaction, the last one being important.

Keywords: cumene hidroperoxide, molybdenum oxide, oxidative desulfurization, dibenzothiophenes.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores agradecen a la DGAPA-UNAM (IN-115514) por el apoyo económico. Se agradece al Consejo Nacional de Ciencia y Tecnología la beca de doctorado para M.A. Alvarez A. A C. Salcedo (DRX) e I. Puente (SEM-EDX) por la asistencia técnica.

 

Referencias

Anisimov, A.V. y Tarakanova, A.V. (2009). Oxidative desulfurization of hydrocarbon raw materials. Russian Journal of General Chemistry 79, 1264-1273.         [ Links ]

Babich, I. y Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel 82, 607-631.         [ Links ]

Becerra J.S., Gomez H., Navarro J. F. y Cedeno Caero L. (2006). Efecto del proceso de extracción sobre la desulfuración oxidativa de compuestos benzotiofeínicos. Revista Mexicana de Ingeniería Química 5, 301-310.         [ Links ]

Campos-Martin, J.M., Capel-Sánchez, P., Pérez-Presas, P. y Fierro J.L.G. (2010). Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology and Biotechnology 85, 879-890.         [ Links ]

Cedeño-Caero, L., Hernández, E., Pedraza, F. y Murrieta, F. (2005). Oxidative desulfurization of synthetic diesel using supported catalysts: Part I. Study of the operation conditions with a vanadium oxide based catalyst. Catalysis Today 107-108, 564-569.         [ Links ]

Cedeño-Caero L. y Alvarez-Amparan M.A. (2014). Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds. Reaction Kinetics, Mechanisms and Catalysis. DOI 10.1007/s11144-014-0729-8.         [ Links ]

Chang J., Wang A., Liu J., Li X., Hu Y. (2010). Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals. Catalysis Today 149, 122126        [ Links ]

Colín-Luna, J.A., Medina-Mendoza, A.K., De los Reyes, J.A., Escobar, J., Montoya de la Fuente, J.A. y Suarez-P., R. (2013). Efecto de larelacion SI/Al en la hidrodesulfuracioín profunda de catalizadores Pt/A1-MCM41. Revista Mexicana de Ingeniería Química 12, 271-282.         [ Links ]

Gómez-Bernal, H. y Cedeño-Caero, L. (2005). Solvent effects during oxidation-extraction desulfurization process of aromatic sulfur compounds from fuels. International Journal of Chemical Reactor Engineering 3, A28.         [ Links ]

Han, X., Wang, A., Wang, X., Li., X., Wang, Y. y Hu, Y. (2013). Catalytic performance of P-modified MoO3 /SiO2 in oxidative desulfurization by cumene hydroperoxide. Catalysis Communications 42, 6-9.         [ Links ]

Huirache-Acuña, R., Sánchez-Bautista, M.G., Lemus-Ruíz, J., Ornelas, C., Paraguay-Delgado, F. y Rivera-Muñoz, E.M. (2010). Synthesis and characterization of partially sulfided CoMoW oxides nanoestructures and their application in the HDS of DBT. Revista Mexicana de Ingeniería Química 9, 209-218.         [ Links ]

Ismagilov, Z., Yashnik, S., Kerzhentsev, M., Parmon, V., Bourane, A., Shahrani, F. M. Al-, Hajji, A. A. y Koseoglu, O. R. (2011). Oxidative desulfurization of hydrocarbon fuels. Catalysis Reviews 53, 199-255.         [ Links ]

Ito, E. y Rob van Veen, J. (2006). On novel processes for removing sulphur from refinery streams. Catalysis Today 116, 446-460.         [ Links ]

Jia, Y., Li, G. y Ning, G. (2011). Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/y-Al2O3 under mild and solvent free conditions. Fuel Processing Technology 92, 106-111.         [ Links ]

Jiang, Z., Lu, H., Zhang, Y. y LI, C. (2011). Oxidative desulfurization of fuel oils. Chinese Journal of Catalysis 32, 707-715.         [ Links ]

Knudsen, K.G., Cooper, B.H. y Topsoe, H. (1999). Catalyst and process technologies for ultra low sulfur diesel. Applied Catalysis A: General 189, 205-215.         [ Links ]

Li, X., Zhu, H., Wang, A., Wang, Y. y Chen, Y. (2013). Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and y-Al2O3. Chemistry Letters 42, 8-10.         [ Links ]

Levin, M.E., González, N.O., Zimmerman, L.W. y Yang, J. (2006). Kinetics of acid-catalyzed cleavage of cumene hidroperoxide. Journal of Hazardous Material 130, 88-106.         [ Links ]

López-Cordero, R. y López-Agudo, A. (2000). Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts. Applied Catalysis A: General 202, 23-35.         [ Links ]

López-Cordero, R., Gil-Llambias F.J. y López-Agudo, A. (1991). Temperature-programmed reduction and zeta potential studies of the structure of Mo/O3Al2O3 and Mo/O3SiO2 catalysts effect of the impregnation pH and molybdenum loading. Applied Catalysis 74, 125-136.         [ Links ]

Mochida, I., Sakanishi, K., Ma, X., Nagao, S. y Isoda, T. (1996). Deep hydrodesulfurization of diesel fuel: design of reaction process and catalysts. Catalysis Today 29, 185-189.         [ Links ]

Montesinos-Castellanos, A., Lima, E., Vázquez-Závala, A., De los Reyes, J.A. y Vera, M.A. (2012). Industrial alumina as a support of MoP: catalytic activity in the hydrodesulphurization of dibenzothiophene. Revista Mexicana de Ingeniería Química 11, 105-120.         [ Links ]

Prasad, V.V.D.N., Kwang-Eun, J., Ho-Jeong, C., Chul-Ung, K. y Soon-Yong, J. (2008). Oxidative desulfurization of 4,6-dimethyl dibenzothiophene and cycle oil over supported molybdenum oxide catalysts. Catalysis communications 9, 1966-1969.         [ Links ]

Qian, E. (2008). Development of novel nonhydrogenation desulfurization process: Oxidative desulfurization of distillate. Journal of the Japan Petroleum Institute 51, 14-31.         [ Links ]

Ramírez-Verduzco, L.F., De los Reyes, J.A. y Torres-García, E. (2008). Solvent effect in homogeneous and heterogeneous reactions to remove dibenzothiophene by an oxidation-extraction scheme. Industrial and Engineering Chemistry Research 47, 5353-5361.         [ Links ]

Sie, S.T. (1999). Reaction order and role of hydrogen sulfide in deep hydrodesulfurization of gas oil: consequences for industrial reactor configuration. Fuel Processing Technology 61, 149-171.         [ Links ]

Song, C. y Ma, X. (2003). New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental 41, 207-238.         [ Links ]

Stanislaus, A., Marafi, A. y Rana, M.S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today 153, 1-68.         [ Links ]

Wang, C.B., Cai, Y. y Wachs, I.E. (1999). Reaction-induced spreading of metal oxides onto surfaces of oxide supports during alcohol oxidation:? phenomenon, nature, and mechanisms. Langmuir 15, 1223-1235.         [ Links ]

Wang, D., Qian, E.W., Amano, H., Okata, K., Ishihara, A. y Kabe, T. (2003). Oxidative desulfurization of fuel oil Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: General 253, 91-99.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License