SciELO - Scientific Electronic Library Online

 
vol.50 issue5Flowering and fructification of Physalis peruviana L. by ammonium and nitrate application, vigor and plant ageMultivariate empirical Bayes to predict the plant breeding values author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Agrociencia

On-line version ISSN 2521-9766Print version ISSN 1405-3195

Agrociencia vol.50 n.5 Texcoco Jul./Aug. 2016

 

Crop Science

Substrates for growing flowers

Salomé Gayosso-Rodríguez1 

Lizette Borges-Gómez1  * 

Eduardo Villanueva-Couoh1 

M. Antonio Estrada-Botello2 

René Garruña-Hernández1 

1Instituto Tecnológico de Conkal, km 16.3, antigua carretera Mérida-Motul. 9345, México (lizette_borges@hotmail.com).

2División Académica de Ciencias Agropecuarias de la Universidad Juárez Autónoma de Tabasco, Km 25, carretera Villahermosa-Teapa, México.


Abstract:

The ornamental activity is an important sector for the Mexican economy. The production of flowers in containers depends partly on the substrate used for its planting. The physical, chemical, and biological characteristics of the substrate, the production system, the crop management, and the type of container must be appropriate for each species. In Mexico, it is common to use soil from hillsides to produce ornamental plants, and the extraction of this substrate causes erosion in the sites from which it is obtained. Tezontle, tepojal, perlite, peat, coir, and vermiculite, are also used. The demand for substrates generates investigations that aim at the physical and chemical characterizations in order to evaluate their potential and know the responses of plants to the mixtures of these materials. The aim of this essay was to know the information related to the use of substrates and their characteristics in the production of ornamental plants in Mexico.

Key words: Production of plants without soil; production in containers; ornamental

Resumen:

La actividad ornamental es un sector importante en la economía de México. La producción de flores en contenedor depende en parte del sustrato usado para su cultivo. Las características físicas, químicas y biológicas del sustrato, el sistema de producción, el manejo del cultivo y tipo de contenedor deben ser apropiadas para cada especie. En México es común usar tierra de monte para producir plantas de ornato, la extracción de este sustrato causa erosión en los sitios de donde se obtiene. También se usan tezontle, tepojal, perlita, turbas, fibra de coco y vermiculita. La demanda de sustratos genera investigaciones cuyos objetivos son caracterizarlos física y químicamente para evaluar su uso potencial y conocer la respuesta de las plantas a las mezclas de estos materiales. El objetivo de este ensayo fue conocer la información relacionada con el uso de sustratos y sus características en la producción de plantas de ornato en México.

Palabras clave: Producción de plantas sin suelo; producción en contenedor; ornamentales

Introduction

Flower farming is an ancient practice that, has developed different production systems. The commercial production of flowers dates back to the 1940's and 1950, when exiles from Japan and Germany began producing cut flowers such as the chrysanthemums and carnations (Zamudio, 2008)3. In Mexico, the production of flowers dates back to prehispanic times, with floating gardens in chinampas, Netzahualcóyotl's Gardens, and the plantation of poinsettia (cuetlaxochitl) by the Aztecs (Quintero et al., 2011). Humans seek an integration of nature with the urban landscape through landscape architecture and planting without the use of soil (Urrestarazu and Burés, 2009).

The diversity of climates in the world helps develop a variety of ornamental plants, and their availability year round. The evolution of production systems offers alternatives in natural and protected environments, such as greenhouses, arbors, macrotunnels, and microtunnels. The most intensive sectors of ornamental agriculture favoured the production of flowers in containers and diverse materials, known as substrates, and displaced the traditional production of the crop in soil. A substrate is the natural solid material, from synthesis or residual, organic or mineral, pure or mixed, that helps anchor the root system in a container, giving the plant support, and participating or not in its nutrition. Substrates are classified in inert only if they provide the plant with support, and active if they also provide nutrients (Pastor, 2000; Abad et al., 2005). Studies on substrates pointed out that obtaining high-quality plants and flowers depended largely on the physical and chemical characteristics of the substrate (Ansorena, 1994; Cabrera, 1999). These properties are considered the most important for the production of any crop produced without soil (Urrestarazu, 2015). The substrates most commonly used in the production of flowers in Mexico are imported from other countries; therefore, the costs of investment are high, and some may not be available at any given time (Abad et al., 2004).

Mexico uses about 500 000 m3 of substrate for the production of ornamental plants in containers, and for this purpose, the main substrate used is soil from hillsides (García et al., 2001). The irrational extraction of this resource causes costly physical mobilization, erosion, and a loss of soil productivity in areas where forest grounds are located (Acosta et al., 2008). The high costs of the substrates, the increasing concern for the deterioration of ecosystems, and the overexploitation of natural resources lead to a constant search for alternative substrates that may fulfill the functions of both support and nourishment, and which may also be available and inexpensive materials that do not harm the environment.

The aim of this essay was to identify the physical and chemical characteristics in that substrates for the production of flowering plants in containers.

Production of flowers in containers

Ansorena (1994) indicated that the term container applies to any type of vessel that can contain a substrate, and in which a plant may develop. In ornamental flowers farming, containers can be used to produce: 1) flowers for cutting, such as agapanthus, gladiolus, lilium (azucenas), nardo (Polianthes tuberosa), bird of paradise, roses, sunflowers, Lissianthus, calla lily, estatice (Limonium sinuatum); 2) foliages, such as Ficus, ferns, araucarias, teléfonos (Epipremnum aureum), hydras (spp), coleos (Coleus blumei), cedars, Cissus, Phylodendrum; 3) plants with flowers in pots, such as impatiens, petunias, kalanchoes, poinsettias, anturios (Anthurium scherzerianum), chrysanthemo (Chrysanthemum morifolium Ramat), zempasúchil (Tagetes erecta), viola tricolor, begonias, vincas (Catharanthus roseus), calla lily, Spathiphyllum, Lilium, bromelias, orchids, hortensias, Gerberas, Cyclamen. The surface planted in containers is variable and in 2004 for the production of flowers for cutting in containers and pots: Europe 54 104 ha, Africa 5697 ha; Asia 224 418 ha, and America 45 980 ha; Mexico allocated 21 129 ha for the production of flowers for cutting and pots (SAGARPA, 2006). However, in 2009, México was fourth in terms of surface allocated for the production of ornamental plants (23 417 ha) worldwide, out of which 75 % were cultivated in open areas, and included gladiolus, carnations, and gysophila; the remaining 25 % was grown in greenhouses, where roses, gerberas and potted plants were grown (SAGARPA, 2011). Estado de México contributes 60 % of the value of the total production, and the rest is provided by Puebla, Morelos, Mexico City, Baja California, Chiapas, Jalisco, Colima, Veracruz, Yucatán, Michoacán, and Guerrero (SAGARPA, 2013).

Mexico has an annual internal consumption value of over one billion dollars in cut flowers and foliage; occasionally, ornamental plants are exported with a value of 30 million dollars. Out of the total production, 95 % is sold domestically, and 3 to 7 % of the production is exported. Mexico also exports tulip and gladiolus bulbs, orchids, carnations, chrysanthemums, Gypsophilia, statice (Limonium sinuatum), gerbera (Gerbera jamesonii), daisies, anturio (Anthurium andreanum), bird of paradise, foliages, and leaves. Of the total 90 % is exported to the United States, and 10 %, to Canada, the Netherlands, Belgiun, Germany, Ukraine, South Africa (SAGARPA, 2009). Also, Mexico imported ornamental plants, mainly roses from Ecuador, and live plants, rootless cuttings and grafts worth one million dollars in 2009, from Costa Rica, Germany, and Guatemala (AGEXPORT, 2010).

The success of the crop depends on using the adequate container and substrates (Mascarini et al., 2012; Urrestarazu, 2015). Plants grown in containers present high transpiration rates, they require plenty of water, and the probability of salinization due to the high rates of water loss. For these reasons, the physical, chemical, and biological characteristics of diverse substrates are necessary, along with the determination of whether they are adequate, on their own, or mixed (Valenzuela et al., 2004)4.

The physical characteristics must be determined before establishing the crop, since they will be difficult to correct afterwards (Ansorena, 1994; Baixauli and Aguilar, 2002; Castellanos, 2003). Chemical characteristics can be modified after the crop has been established by applying nutritional elements (Abad et al., 2005). The biological characteristics may be determined only in organic or active substrates, since they are thermodinamically unstable because organic matter is degraded by the action of microorganisms and chemical hydrolysis reactions (Bures, 1997; Cruz et al., 2013).

Physical and chemical characteristics of the substrate

Studies with unconventional substrates for ornamental plants and flowers in Latin America are based on the characteristics of plants, and less on the quality of the substrates (Valenzuela and Gallardo, 2006)5. It is convenient to characterize the new materials before proposing them as an option (Masaguer, 2013)6. The physical characteristics that must be considered to select a substrate are apparent density, granulometry, porosity, moisture retention (Ansorena, 1994; Urrestarazu, 2015), type of packaging, and permeability (Burés, 1997). The apparent density is defined as the dry mass contained in a 1 cm3 of the culture media, and volume of the container is dependent upon this density (Cruz et al., 2013). For plants in containers in greenhouses, Abad and Noguera (2000) recommend 0.15 g cm-3, whereas Baudoin et al. (2002) mention 0.22 g cm-3, and Quintero et al. (2011) 0.50 to 0.75 g cm-3. Porosity is dependent upon the density of the substrate, and this characteristic directly affects the speed of filtration of water and retention of moisture; and it would be the most significant physical characteristic for ornamental horticulture in containers (Cabrera, 1999; Mascarini et al., 2012). Porosity is determined by the percentage of volume that is not occupied by the solid phase (Ansorena, 1994; Burés, 1997); the total porosity is recommended to be over 85 % of the volume (Morales and Casanova, 2015).

The distribution of the particle size in a material defines the granulometry which, in turn, determines the size of the pores; particles from 0.25 to 1 mm are essential in the relation water-air, the reduction of the particle size reduces the total porosity and consequently, the capacity for retaining water (Vargas et al., 2008; Anicua et al., 2009). It is important for not all pores to be covered in water, in order to allow the oxygenating of roots and the gas exchange between the atmosphere and the substrate; therefore, between 10 and 30 % of the volume of substrate with air is recommended (Morales and Casanova, 2015). This characteristic is known as the capacity of ventilation and is the proportion of the volume of substrate that contains air after being saturated with water and allowed to drain (Abad et al., 2004). The distribution of substrate particles between 0.25 and 2.5 mm is adequate for vegetable crops (Quintero et al., 2011). The mixture of organic and inorganic materials with particles greater than 1 mm favors the formation of pores with complex packing, which, in turn, favor the retention of humidty (Gutiérrez et al., 2011; Morales and Casanova, 2015).

The physical barriers and the limited space imposed by the container reduce the volume of the roots and the pH buffering capacity, increase the requirement of water and nutrients, and the sensitivity to factors that affect the root system, such as air, water, nutrients, pH and electrical conductivity (EC) (Terés, 2000). The water retained by the substrate is not uniform throughout the container (Ansorena, 1994; Mascarini, 2012); therefore, the substrate must have an adequate moisture retaining capacity, which is directly related to porosity, and both depend on the distribution, composition, internal structure, shape and size of the particles, which also influence the relation water-air of the substrate (Anicua et al., 2009). Usable moisture is the difference between the amount of water retained by the substrate after wetting and drained, and the water retained by the substrate which the plant cannot extract; the optimum value is between 20 and 30 % of the volume of the substrate, although there are variations, depending on the needs and tolerance of each species (Abad et al., 2004; Cruz, 2013).

A few of the chemical characteristics of the substrates that must be considered are the content of nutrients, cationic exchange capacity (CEC), pH, EC, C/N ratio and content of phytotoxic elements (Ansorena, 1994; Burés, 1997; Puerta et al, 2012). CEC is the capability of a substrate to adsorb and exchange ions between the negatively and positively charged colloids in the middle, and is related to pH and nutrient availability (Burés, 1997). The optimum value will depend on the frequency of fertilization/irrigation; if it is permanent, the value of CEC will have no effect, but if it is intermittent, the value should be medium or high (>20 meq 100 g-1) (Abad et al., 2004). CEC is determined by the amount of ions in the solution. A high concentration will cause a low water potential, which may cause the plant to lose water, which is why the substrate must have a low salt content (≤2 dS m-1) (Boudin et al., 2002).

The C/N ratio is used as an indicator of the origin, the degree of maturity and the stability of the organic matter (Burés, 1997; Domeño et al., 2011). The composted substrates with a value below 40 are considered mature and stable (Abad et al., 2004). In raw materials for substrates (pine sawdust and coconut fiber), the highest ratio C/N will mean greater stability, and the recommended C/N ratio is between 30 and 300. The materials with a high C/N ratio are more stable and they avoid N losses due to fixation, phytotoxicity due to the presence of organic compounds produced in the degradation process, changes in the CEC or increases in salinity (Domeño et al., 2011).

Substrates used worldwide

The use of substrates is due to the need to transport plants from one place to another, agricultural soil depletion, salinity, and the risk of diseases (Pastor, 2000; Cruz et al., 2013). Substrate production began in the 1960's in the Netherlands, with substrates such as peat moss, sand, clay, pearlite and vermiculite; in the 1980's substrates became diversified and residues and subproducts appeared, such as coconut fiber (Petit and Villegas, 2004; Urrestarazu, 2013).

In Northern Europe, the peat moss is the main substrate, followed by coconut fiber (which surpassed mineral wool in the past two decades), bark and pearlite. In the south, they use mixtures of peat moss with barks, sand, wood products, volcanic products, compost with plant residues, and manures (López et al., 2007; Blok and Urrestarazu, 2010; Alonso et al., 2012). In Spain, mineral wool, pearlite, and coconut fiber are used; and the application and commercialization of volcanic rocks, due to their availability in deposits of the Iberian Peninsula is a source of interest (Urrestarazu, 2013; Pozo et al., 2014). In Argentina pine bark, soil, sand, peat moss, pine needles, cow manure, horse manure, soft wood shavings, and rice husk are used (Oryza sativa); few producers use pearlite and vermiculite (Acosta et al., 2008; Barbaro et al., 2011; Barbaro et al., 2014). In the Dominican Republic, they use rice charcoal and coconut fiber (Pérez et al., 2010)7, similar to Venezuela, where they also use sugarcane pulp (Cásares and Maciel, 2009). In Brazil soil, sand, bovine manure, poultry litter, rice husk, conifer bark, organic composts, vermiculite, pearlite, mineral wool and coconut powder are utilized (Acosta et al., 2008). In Colombia the rice cascarilla, partially burned or toasted, is the main substrate, and it is used with mineral wool, pearlite, coconut fiber, and coal waste (Quintero et al., 2011).

In Mexico, the most commonly used substrate is hillside soil, peat moss, wood products (bark, sawdust, shavings), compost made from organic matter or gardening waste, coconut powder, sewage mud, sludge, manure, hay, rice and peanut husk, and inert materials such as tepojal, tezontle, basalt, pearlite, sand, vermiculite, charred clay, and pumice stone (Iskander, 20028; Zamudio, 2008; Ojodeagua et al., 2008). However, the search for local materials is permanent for recycling them, with an emphasis on those with the lowest cost, and without an environmental impact (Bracho et al., 2009; Avilés et al, 20109; Urresterazu, 2013; Valenzuela et al, 2014; Cruz et al. 2016).

The states that produce ornamental plants (Estado de México, Puebla, Distrito Federal, Morelos, and Michoacán, followed by Baja California, Guerrero, Jalisco, Querétaro, and Oaxaca) use inert substrates mixed with hillside soil and peat moss (García et al., 2001). In Veracruz, Benítez et al. (2002) reported that in government-owned conifer greenhouses, hillside soil is used in combination with sand, leaf soil or tepezil, in a proportion of 1:1. The mixture of rice husk with leaf soil (1:1) is used for tropical species. The producers of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) from Morelos use leaf soil from oak (Quercus resinosa, Q. insicnis, Q. crassipes, and Q. mexicana), "ocochal" obtained from ocote (Pinus montezumae), mixtures of leaf soil-compost-sawdust (50:30:20 v/v) and leaf soil-ocochal (pine ocoxal leaves) (50:50 v/v) (Galindo et al., 2012). The commercial greenhouses for ornamental plants in containers in Tabasco use the cocoa husk mixed with soil taken from the area. In Yucatán, agave pulp (Agave fourcyoydes Lem.), chicken droppings, pig manure, Tsi'tsilche (Gimnopodium floribundum) and soil are used to grow vegetables in containers (Borges, 1998). Organic materials are generally used in mixtures, and inorganic materials are more used individually in hydroponic crops8.

Benefits of substrates on the production of ornamental plants

The contributions of organic residues as substrates to produce ornamental plants are diverse, such as the presence of nutrients easily absorbed by the plant, plant growth regulators, microorganisms that help in nutrient absorption, and are an aide for the growth of organisms which help control plant pathogens (Puertas and Hidalgo, 2009; Puerta et al., 2012). Ayala and Valdez (2008) used coconut fiber-based substrate to evaluate the first stage of growth of ornamental flower species, such as Dianthus chinensis (China pink), Gazania rigens (gazania), Tagetes erecta (marigold), Viola wittrockiana (viola tricolor), Antirrhinum majus (snapdragon), and Petunia x hybrida (petunia). Results showed that plants grown in coconut powder delayed their growth, and the authors pointed this out as an advantage, since tall plants cause the containers to tip over (García et al., 2010) and flower quality was not affected.

Flores et al. (2008) used coconut powder to produce Cyclamen persicum Mill. and no differences were observed in the foliar area or dry matter with regard to plants grown in a commercial peat moss based substrate. Jaramillo et al. (2004) used coconut fiber mixed with leaf soil and pearlite to grow malvón (Pelargonium sp.); the mixture enhanced plant growth (radicle, biomass, and number of leaves) and moisture retention improved in comparison to when using the same individual substrates. Coconut fiber was also evaluated in a mixture with rice husk to produce Anthurium x Cultorum cv. Arizona (Cásares and Maciel, 2009); results showed a greater physical stability of the substrate (no contraction), which favored growth and the number of inflorescences in comparison to the combination of rice husk and sugarcane pulp. Vermicompost enhanced growth, flowering, and root development in Ageratum hustonianum and Petunia hybrida. The cachaza in the form of mud, derived from the process of clarification of sugarcane juice during the manufacturing of sugar, mixed with peat-mossâ and tezontle was used to produce apical stakes of Kalanchoe blossfeldiana (Poelln.) Sensation; results showed that the mixture increased the number of roots, root exploration, diameter of stem, and K absorption (Villanueva et al., 1998). Mixtures of agave pulp, pig manure, and dzilziché (Gimnopodium floribundum), combined with different proportions of soil were used to produce chrysantemums. Out of these, the combination soil:agave pulp (70:30) produced plants with a higher inflorescence quality (Villanueva et al., 2010). Alonso et al. (2012) evaluated mixtures of chicken droppings with hay or sawdust, plus black and blonde peat moss, in yellow chrysanthemums cv. Albanor in containers. The application of chicken droppings to black peat moss increased the amount of flowers significantly, but some plants died with the increase of chicken droppings.

Organic residues are unstable, studies related to the necessary proportions should be increased. The use of organic residues for vegetable production led to several investigations; besides, inorganic materials such as tezontle, are of interest as an agricultural substrate (Ojodeagua et al., 2008; Vargas et al., 2008; Anicua et al., 2009; Gutiérrez et al., 2011; Rodríguez et al., 2013; Trejo et al., 2013).

Studies on the use of substrates have also shown unfavorable results. Such is the case of the suppression of seed production in petunias (Petunia x hybrida Hort), growth reduction in viola tricolor (Viola x wittrockiana subsp. Delta) and primrose (Primula acaulis subsp. Oriental) (García et al., 2010; Lazcano y Domínguez, 2010; Acosta et al., 2014).

Alternative substrates for the production of ornamental plants

Investigations to find options and replace the use of leaf soil as a substrate in ornamental plants have been diverse. Zeolite is an inert material, of sedimentary origin, of the group of the aluminosilicates, which is used with this purpose. In Mexico, there are deposits in at least 13 states (Urbina et al., 2011). The physical characteristics of zeolite were evaluated by Anicua et al. (2009) and compared with those of tezontle. Results showed that the hydric and osmotic potentials change with the size of the zeolite particles. The authors concluded that zeolite could be used as an alternative, with results similar to those obtained with tezontle, since there are no effects or interaction with the granulometry.

Pine bark (abundant in the state of Oaxaca) was physically and chemically characterized and evaluated, composted and mixed with bovine manure and peat moss, clay, vermiculite, maguey pulp, raw sawdust, and commercial substrate. The mixture with peat moss, vermiculite and maguey pulp showed physical characteristics in the adequate intervals for plant production (Masaguer et al., 2013)10. Coffee (Coffea arabica L.) pulp and the residue from soyate (Brahea dulcis) (Sustaita, 2009) were also characterized, and both have appropriate physical and chemical characteristics. Tequila agave (Agave tequilana Weber) pulp in vermicompost and compost mixed with sheep manure (4:1; V/V) is a potential substrate for agriculture (Rodríguez et al., 2010).

Padrón et al. (2004) incorporated cocoa husk to polyurethane foam and observed that the physical and mechanical characteristics of resistance to deformation by compression improved, and there was as increments of degradability as well as water absorption; therefore, it can be used as a substrate for semi-deserted areas. García et al. (2010) documented the mitigation of the negative effect of salinity (sodium and chlorine contents, mainly) of the composts in plant growth.

Challenges to the production of substrates

Despite the progress in the composition and characterization of some substrates, their uses still face challenges such as the environmental impact, costs, availability, and standardization (Burés, 1997; Abad et al., 2004). Regarding the environmental impact, the exploitation of natural non-renewable resources as material for substrates, there are still some problems to be solved regarding the irrational use of hillside soil, since it would cause serious erosion and losses of soil productivity (Diario Oficial de la Federación, 1996). Likewise, the peat moss reserves are limited (Fernández et al., 2006), and the high cost and exploitation do not sustain the production of peat-mossâ and may impact the environment (Abad et al., 2004; Block and Urrestarazu, 2010). The use of inert substrates also causes problems, such as the drainage of nutrient dissolutions that pollute the soil and water tables, Block and Urrestarazu (2010) indicated some of the issues in the production of substrates, such as the difficulty to produce the particle size (8 mm) in pearlite and the loss of volume due to the reorientation of the particles of wood fiber planting boards.

High prices, the environmental impact, and the questionable future availability of the materials currently used as substrates highlight the importance of the use of autochthonous organic and locally available materials. The use of materials of plant and animal origin in organic agriculture, such as green fertilizers, mulch, compost, manures, and others, is an alternative to fertilize, improve the soil and satisfy the need to grow plants with sustainable purposes (FIRA, 2003)11. Also, locally available organic residues also have drawbacks, such as the unstable supply through time and the heterogeneity of the material (Abad et al., 2004). Pineda et al. (2012) evaluated the variation of the physical characteristics of the substrate based on pine sawdust (Pinus sp.) mixed with tezontle, in five plantation cycles for tomato (Licopersicum esculentum L.) and they observed significant changes in the physical characteristics of porosity, retention of moisture, and capacity of ventilation. Therefore, the stabilization of the materials should be studied before they can be considered as substrates.

Block and Urrestarazu (2010) point out aspects that must be taken into account in the production of substrates, such as energy consumption, CO2 release, water use and transportation for a sustainable, innocuous, and economically sustainable production. Pastor (2000) and Abad et al. (2004) state that, regarding the manufacture, challenges are the efficiency in the process of composting and the production of mixtures, mechanizing procedures and characterization of final mixtures. The materials must also be easy to handle, obtainable, inexpensive, stable, rehydratable, and easy to mix.

Conclusions

The use of substrates in the past decades was favored due to the fact that utilization of fertilizers and agrochemicals has decreased, reducing their environmental impact. Plantations in containers may continue to increase due to the demand of agricultural products by the constantly growing urban population. The global interest for the integration of organic residues in intensive vegetable and ornamental plant production systems is constant, through their reuse, recycling, and valuation as affordable, ecologic, and locally available substrates or substrate components. The new proposals of materials for substrates must be founded on the physical, chemical, and biological characterizations, determination of particle size, the degree of compost maturity, mechanized procedures and mixtures that allow to optimize the homogeneity of results, reduce the leaches as pollution sources, efficient water use, and an innocuous reincorporation of wastes into the environment.

REFERENCES

Abad B., M., P. Noguera M., y C. B. Carrión. 2004. Los sustratos en los cultivos sin suelo. In: Urrestarazu, M. G. (ed). Tratado de Cultivo sin Suelo. Mundi-Prensa. Madrid, España. pp: 113-158. [ Links ]

Abad B., M., P. Noguera M., y C. B. Carrión. 2005. Sustratos en los cultivos sin suelo y fertirrigación. In: Cadahía, C. L. (ed.). Fertirrigación: Cultivos Hortícolas y Ornamentales. Mundi-Prensa. Madrid, España. pp: 299-352. [ Links ]

Abad, M., y P. Noguera. 2000. Los sustratos en los cultivos sin suelo. In: Urrestarazu, M. G. (ed.). Manual del Cultivo sin Suelo. Mundi-Prensa. Almería, España. pp: 137-184. [ Links ]

Acosta D., C. M., N. Vázquez B., O. Villegas T., B. Vence L., y D. Acosta P. 2014. Vermicomposta como componente de sustrato en el cultivo de Ageratum houstonianum Mill. y Petunia hybrida E. Vilm en contenedor. Bioagro 26: 107-114. [ Links ]

Acosta D., C. M., S. Gallardo C., N. Kämpf, y F. Carvallo B. 2008. Materiales regionales utilizados en Latinoamérica para la preparación de sustratos. Inv. Agrop. 5: 93-106. [ Links ]

AGEXPORT (Asociación Guatemalteca de Exportadores). 2010. Guía sectorial de exportación a México: flores y plantas ornamentales. Guatemala. 102 p. export.com.gt/portal/mesoamerica/GUIA%20SECTORIAL%20DE%20EXPORTACIN%20DE%20ALIMENTOS%20PROCESADOS.pdf (Consulta: Abril 2015). [ Links ]

Alonso, F., R. Miralles De I., J. V. Martín, C. Rodríguez, y M. M. Delgado. 2012. Response of chrysanthemum plant to addition of broiler manure as a substitute for commercial substrate. Rev. Int. Contam. Ambient. 28: 259-263. [ Links ]

Anicua, S., M. C. Gutiérrez C., P. Sánchez G., C. Ortiz S., V. H. Volke H., y J. E. Rubiños P. 2009. Tamaño de partícula y relación micromorfológica en propiedades físicas de perlita y zeolita. Agric. Téc. Méx. 35: 147-156. [ Links ]

Ansorena M., J. 1994. Sustratos. Propiedades y Caracterización. Mundi-Prensa. Madrid, España. 170 p. [ Links ]

Ayala S., A., y L. A. Valdez. 2008. El polvo de coco como sustrato alternativo para la obtención de plantas ornamentales para trasplante. Rev. Chapingo Ser. Hortic. 14: 161-167. [ Links ]

Baixauli S., C., y J. M. Aguilar O. 2002. Cultivo de Hortalizas, Aspectos Prácticos y Experiencias. Generalitat Valenciana. Valencia, España. 110 p. www.ivia.es/sdta/pdf/libros/n53.pdf (Consulta: Enero 2015). [ Links ]

Barbaro L., A., A. Karlanian M., E. Morisigue1 D., F. Rizzo P., I. Riera N., D. Torre V., y E. Crespo D. 2011. Compost de ave de corral como componente de sustratos. Cien. Suelo (Arg.) 29: 83-90. [ Links ]

Barbaro L., A. , D. C. Imhoff S., y E. Morisigue D. 2014. Evaluación de sustratos formulados con corteza de pino, pinocha y turba subtropical. Cien. Suelo (Arg.) 32: 149-158. [ Links ]

Baudoin, W., A. Nisen, M. Grafiadellis, H. Verlodt, R. Jiménez, O. De Villele, y A. Monteiro, 2002. El cultivo protegido en el clima mediterráneo. Medios y Técnicas de Producción. Suelo y Sustratos. FAO. Roma. pp: 143-182. [ Links ]

Benítez, G., M. Equihua, y M. T. Pulido S. 2002. Diagnóstico de los viveros oficiales de Veracruz y su papel para apoyar programas de reforestación y restauración. Rev. Chapingo Cien. For. Amb. 8: 5-12. [ Links ]

Blok, C., y M. Urrestarazu G. 2010. El uso de los sustratos en Europa es cada vez mayor. Hort. Global 289: 50-55. [ Links ]

Borges G., L. 1998. Usos de sustratos regionales en la agricultura yucateca. Rev. Acad. Mexicana Cien. 49: 21-26. [ Links ]

Bracho, J., F. Pierre, y A. I. Quiroz. 2009. Caracterización de componentes de sustratos locales para la producción de plántulas de hortalizas en el estado de Lara, Venenzuela. Bioagro 21: 117-124. [ Links ]

Burés, S. 1997. Sustratos. Agrotécnicas S. L. Madrid, España. 340 p. [ Links ]

Cabrera R., I. 1999. Propiedades, uso y manejo de sustratos de cultivo para la producción de plantas en macetas. Rev. Chapingo Ser. Hortic. 5: 5-11. [ Links ]

Cásares, M. C. y N. Maciel. 2009. Estabilidad del medio de crecimiento y comportamiento del anturio (Anthurium x Cultorum cv. Arizona) en sustratos de disponibilidad local. Bioagro 21: 99-104. [ Links ]

Castellanos R., J. Z. 2003. Manejo de la fertirrigación en suelo. In: Castellanos R., J. Z., y J. J. Muñoz, (eds). Manual de Producción Hortícola en Invernadero. 2a Edición. Ed. Intagri INCAPA. Guanajuato, México. pp: 103-123. [ Links ]

Cruz C., E., A. Can C., M. Sandoval V., R. Bugarín M., A. Robles B., y P. Juárez L. 2013. Sustratos en la horticultura. Rev. BioCiencias 2: 17-26. [ Links ]

Cruz C., J. M., J. M. Álvarez S., M. D. J. Soria F., y C. Martínez B. 2016. Producción de sustratos orgánicos para ornamentales a menor costo que los importados. Rev. Cien. Téc. Agropec. 25: 44-49. [ Links ]

Diario Oficial de la Federación. 1996. NOM-003-RECNAT. Norma Oficial Mexicana que establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de tierra de monte. www.dof.gob.mx/nota_detalle.php?codigo=4887401&fecha=05/06/1996. (Consulta: Agosto 2014). [ Links ]

Domeño, I., I. Irigoyen, y J. Muro. 2011. Comparison of traditional and improved methods for estimating the stability of organic growing media. Sci. Hort. 130: 335-340. [ Links ]

Fernández B., C., N. Urdaneta, W. Silva, H. Poliszuk, y M. Marín. 2006. Germinación de semillas de tomate (Lycopersicon esculentum Mill.) cv ‘Río Grande sembradas en bandejas plásticas, utilizando distintos sustratos. Rev. Fac. Agron. Univ. Zulia 23: 188-195. [ Links ]

Flores A., R., M. Livera M., M. T. Colinas L., E. A. Gaytán A., y A. Muratalla L. 2008. Producción de plántulas de ciclamen (Cyclamen persicum Mill.) en sustratos basados en polvo de bonote de coco. Rev. Chapingo Ser. Hortic. 14: 309-318. [ Links ]

Galindo G., D. V., I. Alia T., M. Andrade R., M. T. Colinas L., J. Canul K., y M. D. J. Sainz A. 2012. Producción de nochebuena de sol en Morelos, México. Rev. Mex. Cienc. Agríc. 3: 751-763. [ Links ]

García A., J. C., L. I. Trejo T., M. A. Velásquez H., A. Ruíz B., y F. C. Gómez M. 2010. Crecimiento de petunia en respuesta a diferentes proporciones de composta en sustrato. Rev. Chapingo Ser. Hortic. 16: 107-113. [ Links ]

García C., O., G. Alcántar G., R. I. Cabrera, R. F. Gavi, y V. Volke H. 2001. Evaluación de sustratos para la producción de Epipremnum aureum y Spathiphyllum wallisii cultivadas en maceta. Terra Latinoam. 19: 249-258. [ Links ]

Gutiérrez C., M., D. Carmen, J. Hernández E., C. A. Ortíz S., R. Anicua S., y M. Hernández L. 2011. Relación porosidad-retención de humedad en mezclas de sustratos y su efecto sobre variables respuesta en plántulas de lechuga. Rev. Chapingo Ser. Hortic. 17: 183-196. [ Links ]

Jaramillo R., M. A., C. M. Acosta D., V. López M., I. Alia T., y D. Acosta P. 2004. La fibra de coco como componente del sustrato para la producción de malvón (Pelargonium spp) en contenedor. Invest. Agrop. 2: 65-73. [ Links ]

Lazcano, C., and J. Domínguez. 2010. Effects of vermicompost as a potting amendment of two commercially-grown ornamental plant species. Span. J. Agric. Res. 8: 1260-1270. [ Links ]

López C., M. C., J. Ruiz F., y A Masaguer. 2007. Respuesta del cultivo Dianthus caryophyllus en diferentes sustratos ecocompatibles procedentes de subproductos orgánicos de distintos sectores de producción. Actas Horti. 47: 151-156. [ Links ]

Mascarini, L., G. Lorenzo, H. Svartz, S. Pesenti, y S. Amado. 2012. Tamaño de contenedor y tipo de sustrato afectan la eficiencia en el uso del agua en Gerbera jamesonii para flor cortada. Rev. Bras. Hort. Ornam. 18: 71-77. [ Links ]

Morales M., E. R., y F. Casanova L. 2015. Mezclas de sustratos orgánicos e inorgánicos, tamaño de partícula y proporción. Agron. Mesoam. 26: 365-372. [ Links ]

Ojodeagua A., J. L., J. Z. Castellanos R., J. J. Muñoz R., G. Alcántar G., L. Tijerina C., P. Vargas T., y S. Enríquez R. 2008. Eficiencia de suelo y tezontle en sistemas de producción de tomate en invernadero. Rev. Fitotec. Mex. 31: 367-374. [ Links ]

Padrón G., G., E. M. Arias M., J. Romero G., A. Benavides M., J. Zamora R., y S. P. García R. 2004. Efecto de la cáscara de cacao en la obtención de espumas de poliuretano para uso hortícola. Propiedades físicas y de biodegradabilidad. Rev. Soc. Quím. Méx. 48: 156-164. [ Links ]

Pastor S., J. N. 2000. Utilización de sustratos en viveros. Terra Latinoam. 17: 231-235. [ Links ]

Petit E., F., y J. Villegas M. 2004. Cultivo de fibra de coco. In: Urrestarazu, M. G. (ed). Tratado de Cultivo sin Suelo. Mundi-Prensa. Madrid, España. pp: 637-657. [ Links ]

Pineda P., J., F. Sánchez D. C., A. Ramírez A., A. M. Castillo G., L. A. Valdés A., y E. D. C. Moreno P. 2012. Aserrín de pino como sustrato hidropónico. I: variación en características físicas durante cinco ciclos de cultivo. Rev. Chapingo Ser. Hortic. 18: 95-111. [ Links ]

Pozo, J., J. E. Álvaro, I. Morales, J. Requena, T. La Malfa, P. C. Mazuela, y M. Urresterazu G. 2014. A new local sustainable inorganic material for soilless culture in Spain: Granulated volcanic rock. HortScience 49: 1537-1541. [ Links ]

Puerta A., C. E., T. Russián L., y C. A. Ruíz S. 2012. Producción de plántulas de pimentón (Capsicum annuum L.) en sustratos orgánicos a base de mezclas con fibra de coco. Rev. Cient. UDO Agríc. 12: 298-306. [ Links ]

Puertas, A., y L. Hidalgo D. 2009. Efecto de diferentes abonos orgánicos sobre el establecimiento de Pochonia chlamysdosporia var. Catenulata en el sustrato y la rizosfera de plantas de tomate. Rev. Protec. Veg. 24: 162-165. [ Links ]

Quintero C., M. F., C. A. González M., y J. M. Guzmán P. 2011. Sustratos para cultivos hortícolas y flores de corte. In: Flórez R., V. J. (ed). Sustratos, Manejo del Clima, Automatización y Control en Sistemas de Cultivo sin Suelo. Universidad Nacional de Bogotá. Colombia. pp: 79-108. [ Links ]

Rodríguez D., E., E. Salcedo P., R. Rodríguez M., D. R. González E., y S. Mena M. 2013. Tezontle reuse: effect on physical properties and tomato (Lycopersicon esculentum Mill) Production. Terra Latinoam. 31: 275-284. [ Links ]

Rodríguez M., R., E. G. Alcantar G., G. Iñiguez C., F. Zamora N., P. M. García L., M. A. Ruíz L., y E. Salcedo P. 2010. Caracterización física y química de sustratos agrícolas a partir de bagazo tequilero. Interciencia 35: 515-520. [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación). 2006. La Floricultura mexicana, el gigante que está despertando. Claridades Agropecuarias 154: 2-38. www.infoaserca.gob.mx/claridades/marcos.asp?numero=154. (Consulta: Febrero 2015). [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación). 2009. La infraestructura y sistemas requeridos para el desarrollo de clústeres de horticultura ornamental orientados a la exportación de productos de valor agregado a los Estados Unidos y Canadá. www.sagarpa.gob.mx/agronegocios/Documents/Estudios_promercado/ORNAMENTAL.pdf. (Consulta: Abril 2015). [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación). 2011. Comunicado de prensa 238/11. Coordinación General de Comunicación Social. México D. F. http://sagarpa.gob.mx/saladeprensa/boletines2/2011/mayo/Documents/2011B238.pdf (Consulta: Abril, 2015). [ Links ]

SAGARPA (Secretaría de Agricultura, Ganadería, Pesca y Alimentación). 2013. El valor de la producción de ornamentales en México fue de más de cinco mil millones de pesos en 2011. Sistema de Información Agroalimentaria y Pesquera. México, D. F. Boletín 5/13. www.siap.gob.mx/produccionornamental-mexico/. (Consulta: Abril 2015). [ Links ]

Sustaita R., F. 2009. Utilización de residuos de palma de sombrero (Brahea dulcis) como sustrato de cultivo. www.utm.mx/~mtello/Extensos/Agosto.html. (Consulta: Agosto 2014). [ Links ]

Terés, V. 2000. Riego en sustratos de cultivo. Horticultura 147: 16-30. [ Links ]

Trejo T., L. I., M. Ramírez M., F. C. Gómez M., J. C. García A., G. A. Baca C., y O. Tejeda S. 2013. Physical and chemical evaluation of volcanic rocks and its use for tulip production Rev. Mex. Cien. Agríc. 4: 863-876. [ Links ]

Urbina S., E., G. A. Baca C., R. Núñez E., M. T. Colinas L., L. Tijerina C., y J. L. Tirado T. 2011. Zeolita como sustrato en el cultivo hidropónico de Gerbera. Terra Latinoam. 29: 387-394. [ Links ]

Urrestarazu, M. 2013. State of the art and new trends of soilless culture in Spain and in emerging countries. Acta Horticulturae 1013: 305-312. [ Links ]

Urrestarazu, M. 2015. Manual Práctico del Cultivo sin Suelo e Hidroponía. Mundi-Prensa. Madrid, España. 278 p. [ Links ]

Urrestarazu, M., y S. Burés. 2009. Aplicación de cultivos sin suelo en la agricultura. Hort. Inter. 70: 10-15. [ Links ]

Valenzuela, O. R., C. S. Gallardo, M. S. Carponi, M. E. Aranguren, H. R. Tabares, y M. C. Barrera. 2014. Manejo de las propiedades físicas en sustratos regionales para el cultivo de plantas en contenedores. Cien. Docen. Tec. 4: 1-19. [ Links ]

Vargas T., P., J. Z. Castellanos R., J. J. Muñoz R., P. Sánchez G., L. Tijerina C., R. M. López R., C. Martínez S., y J. L. Ojodeagua A. 2008. Efecto del tamaño de partícula sobre algunas propiedades físicas del tezontle de Guanajuato, México. Agr. Téc. Méx. 34: 323-331. [ Links ]

Villanueva C., E., G. Alcántar G., P. Sánchez G., M. Soria F., y A. Larqué S. 2010. Nutrición mineral con nitrógeno, fósforo y potasio para la producción de Chrysanthemum morifolium Ramat. con sustratos regionales en Yucatán, México. Terra Latinoam. 28: 43-52. [ Links ]

Villanueva R., E., P. Sánchez G., N. Rodríguez M., E. Villanueva N., E. Ortiz M., y J. A. Gutiérrez E. 1998. Efecto de reguladores del crecimiento y tipo de sustrato en el enraizamiento de Kalanchoe. Terra Latinoam. 16: 33-41. [ Links ]

3Zamudio G, B. 2008. Avances de la nutrición de ornamentales en México. In: XI Congreso Ecuatoriano de la Ciencia del suelo. Quito Ecuador. pp: 1-22.

4Valenzuela O., R., C. S. Gallardo, y M. Rode I. 2004. Caracterización de algunos materiales clásicos utilizados en la formulación de sustratos. In: II Congreso Argentino de Floricultura y Plantas Ornamentales. INTA. Buenos Aires, Argentina. pp: 200-202.

5Valenzuela, O. R. y C. S. Gallardo. 2006. Investigación en América Latina sobre los sustratos usados en floricultura y plantas ornamentales: Aspectos metodológicos y experimentales. In: Congreso Argentino de Floricultura. 3a Jornadas Nacionales de Floricultura. Buenos Aires, Argentina.

6Masaguer A., V. Gómez M., J. Cámara, H. Zárate B., L. Guzmán D., y V. González V. 2013. Transformación de subproductos forestales en medios de cultivo en Oaxaca (México). In: VII Congreso Ibérico de Agroingeniería y Ciencias Hortícolas. Madrid, España. 22 p.

7Pérez, A., I. Almonte, E. Avilés Q., C. Martínez P., G. López, y P. Núñez. 2010. Caracterización de sustratos utilizados en la producción de vegetales en invernaderos. In: Proceedings of the Caribbean Food Crops Society. 46th Annual Meeting. Lugo, W. I. y Colón W. (ed.). Boca Chica, Dominican Republic 46: 67-72.

8Iskander C. R. 2002. Manejo de sustratos para la producción de plantas ornamentales en maceta. In: 2o Simposio Nacional de Horti-cultura. Memorias. Universidad Autónoma Agraria Antonio Narro. Saltillo, Coahuila, México. 9 p.

9Avilés Q., E., A. Pérez, I. Almonte, G. López, C. Martínez, y P. Núñez. 2010. Caracterización de materiales alternativos en la elaboración de sustratos para la producción en invernaderos. In: Proceedings of the Caribbean Food Crops Society. 46th Annual Meeting. Lugo, W. I. y Colón W. (ed.). Boca Chica, Dominican Republic pp: 73-80.

10Masaguer A., V. Gómez M., J. Cámara, H. Zárate B., L. Guzmán D., y V. González V. 2013. Transformación de subproductos forestales en medios de cultivo en Oaxaca (México). In: VII Congreso Ibérico de Agroingeniería y Ciencias Hortícolas. Madrid, España. 22 p.

11FIRA. (Fideicomisos Instituidos En Relación Con La Agricultura) 2003. Agricultura Orgánica. Una oportunidad sustentable de negocios para el sector agroalimentario mexicano. Boletín Informativo. No. 322. Vol. XXXV. 124 p.

Received: October 2015; Accepted: February 2016

* Author for correspondence: lizette_borges@hotmail.com

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons