SciELO - Scientific Electronic Library Online

 
vol.48 issue6The laser-backscattering equations and their application to the study of the atmospheric structureThe atomic and electronic structure of amorphous silicon nitride author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.48 n.6 México Dec. 2002

 

Investigación

 

Magnetic properties of Fe1/CrN nanoinclusions in Fe

 

P.G. Alvarado-Leyva1, J.M. Montejano-Carrizales2, J.L. Morán-López3

 

1 Departamento de Física, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, S.L.P., México.

2 Instituto de Física, "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, S.L.P., México.

3 Instituto Potosino de Investigación Científica y Tecnológica, Apartado Postal 3-74 Tangamanga, 78231 San Luis Potosí, S.L.P., México.

 

Recibido el 11 de marzo de 2002.
Aceptado el 21 de agosto de 2002.

 

Abstract

The magnetic properties of Fe1 /CrN inclusions in a Fe matrix are calculated as a function of the Cr number of atoms N at zero temperature, and for N ≤ 168. The electronic structure is determined by using a realistic spd-band Hamiltonian. The local magnetic moments μ(i) at the various cluster sites i are calculated selfconsistently in the unrestricted Hartree-Fock approximation. The results show clearly the importance of the local geometry and the magnetic interactions between neighbors. The matrix Fe atoms couple always antiferromagnetically to the Cr atoms, imposing for small N spin arrangements that overcome the antiferromagnetic interactions of the Cr cluster. The antiferromagnetic arrangement becomes possible in the interior of the cluster as the number of Cr atoms becomes larger than 88.

Keywords: Nanoinclusions; magnetic properties; magnetic local moments.

 

Resumen

Se calculan las propiedades magnéticas de inclusiones de Fe1 /CrN en una matriz de Fe, como una función del número N de átomos de Cr, a temperatura cero y valores de N ≤ 168. La estructura electrónica se determina usando un hamiltoniano que toma en cuenta electrones de los tipos s, p y d. Usando la aproximación irrestricta de Hartree-Fock se calcula autoconsistentemente el momento magnético local μ(i) en los diferentes sitios i del cúmulo. Los resultados muestran claramente la importancia de la geometría local y las interacciones magnéticas entre vecinos. Los átomos de Fe de la matriz se acoplan siempre antiferromagnéticamente a los átomos de Cr, imponiendo arreglos de espín que sobrepasan el antiferromagnetismo entre iones del cúmulo de Cr para valores pequeños de N. Los arreglos anti ferromagnéticos se presentan dentro del cúmulo de Cr cuando el numero de átomos de Cr es más grande que 88.

Descriptores: Inclusiones nanométricas; propiedades magnéticas; momentos locales magnéticos.

 

PACS: 75.50.Rb

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was done under the auspices of CONACyT (México) through grants G-25851-E and W-8001 (Millennium Initiative). One of the authors (P.G.A.L.) acknowledges to FAI-UASLP (México) under contract C00-FAI-11-13.76.

 

References

1. Magnetic Nanostructures, edited by H. Singh Nalwa (American Scientific Publishers, California, 2002)        [ Links ]

2. P. Grünberg et al., Phys. Rev. Lett. 57 (1986) 2442.         [ Links ]

3. S.S.P. Parkin, N. More, and K.P. Roche, Phys. Rev. Lett. 64 (1990) 2304.         [ Links ]

4. M.N. Baibich et al., Phys. Rev. Lett. 61 (1988) 2472;         [ Links ] R. Schad et al., Phys. Rev. B. 59 (1999) 1242;         [ Links ] R. Schad et al., J. Magn. Magn. Mater. 198 (1999) 104.         [ Links ]

5. J. Unguris, R.J. Celotta, and D.T. Pierce, Phys. Rev. Lett. 67 (1991) 140.         [ Links ]

6. C.M. Schmidt et al., Phys. Rev. B 60 (1999) 4158;         [ Links ] G. Palasantzsas, J. Appl. Phys. 86 (1999) 6879.         [ Links ]

7. A. Moschel, R.A. Hyman, A. Zangwill, and M.D. Stiles, Phys. Rev. Lett. 77 (1996)3653.         [ Links ]

8. S. Mirbt, O. Ericksson, B. Johansson, and H.L. Skriver, Phys. Rev.B 52 (1995) 15070; S. Mirbt, I.A. Abrikosov, B. Johansson, and H.L. Skriver, ibid 55 (1997) 67.         [ Links ]

9. D. Stoeffler and F. Gautier, J. Magn. Magn. Mater. 147 (1995) 260.         [ Links ]

10. Jian-hua Xu and A.J. Freeman, Phys. Rev. B 47 (1993) 165.         [ Links ]

11. D.T. Pierce, R.J. Celotta, and J. Unguris, J. Appl. Phys. 73 (1993) 6201;         [ Links ] J. Unguris, R.J. Celotta, and D.T. Pierce, Phys. Rev. Lett. 69,(1992) 1125.         [ Links ]

12. C. Turtur and G. Bayreuther, Phys. Rev. Lett. 72 (1994) 1557.         [ Links ]

13. A.J. Ives, J.A.C. Bland, R.J. Hicken, and C. Daboo, Phys. Rev. B 55 (1997) 12428.         [ Links ]

14. K. Mibu et al., Phys. Rev. Lett. 84 (2000) 2243.         [ Links ]

15. P. Alvarado, J. Dorantes-Dávila, and G.M. Pastor, Phys. Rev. B 58 (1998) 12216.         [ Links ]

16. Ultrathin Magnetic Structures I and II, edited by J.A.C. Bland and B. Heinrich (Springer, New York, 1994).         [ Links ]

17. C.H. Chang and M.H. Kryder, J. Appl. Phys. 75 (1994) 6864.         [ Links ]

18. P. Bruno et al., J. Appl. Phys. 68 (1990) 5759.         [ Links ]

19. J. Barnas and G. Palasantzsas, J. Appl. Phys. 82 (1997) 3950.         [ Links ]

20. C. Carbone and S.F. Alvarado, Phys. Rev. B 36 (1987) 2433.         [ Links ]

21. R.Q. Hood, L.M. Falicov, and D.R. Penn, Phys. Rev. B 49 (1994) 368; Y. Asano, A. Oguria, and S. Maekawa, ibid 48 (1993) 6192; J. Barnas and Y. Bruynseraede, ibid 53 (1996) 5449.         [ Links ]

22. Z. Frait et al., Solid State Commun. 112 (1999) 569.         [ Links ]

23. T.S. Toellner et al., Phys. Rev. Lett. 74 (1995) 3475; E.E. Fullerton et al., ibid 75 (1995) 330.         [ Links ]

24. A. Azevedo et al., Phys. Rev. Lett. 76 (1996) 4837.         [ Links ]

25. W.A. Harrison, Electronic Structure and Properties of Solids (Freeman, San Francisco, 1980).         [ Links ]

26. J. Dorantes-Dávila, A. Vega, and G.M. Pastor, Phys. Rev. B 47 (1993) 12995; J. Dorantes-Dávila and G.M. Pastor, ibid 51 (1995) 16627.         [ Links ]

27. M. van Schilfgaarde and W.A. Harrison. Phys. Rev. B 33 (1986) 2653.         [ Links ]

28. G.M. Pastor, J. Dorantes-Dávila, and K.H. Bennemann, Chem. Phys. Lett. 148,(1988) 459.         [ Links ]

29. R. Haydock, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1980), Vol 35, p. 215.         [ Links ]

30. R.H. Victora, L.M. Falicov, and S. Ishida, Phys. Rev. B 30 (1984) 3896.         [ Links ]

31. D.A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).         [ Links ]

32. M. Freyss, D. Stoeffler, and H. Dreyssé. Phys. Rev. B 56 (1997) 6047.         [ Links ]

33. J.B. Mann, Los Alamos Science Laboratory Report No. LA-3690, 1967 (unpublished).         [ Links ]

34. K. Ounadjela et al., Europhys. Lett. 15 (1991) 875.         [ Links ]

35. B. Drittler et al., Phys. Rev. B 40 (1989) 8203.         [ Links ]

36. M.F. Collins and G.G. Low, Proc. Phys. Soc. London 86 (1965) 535;         [ Links ] A.T. Aldred, B.D. Rainford, J.S. Kouvel, and T.J. Hicks, Phys. Rev. B 14 (1976) 228.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License