SciELO - Scientific Electronic Library Online

 
vol.44 issue2The RESNOM seismic catalog and its bearing on the seismicity of Northwestern MexicoEarthquake families in the seismicity of Popocatépetl volcano author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Geofísica internacional

On-line version ISSN 2954-436XPrint version ISSN 0016-7169

Geofís. Intl vol.44 n.2 Ciudad de México Apr./Jun. 2005

 

Articles

Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge

Marina Manea1  2 

Vlad C. Manea1  2 

Vladimir Kostoglodov1 

Marco Guzmán-Speziale3 

1 Instituto de Geofísica, UNAM, Cd. Universitaria, 04510 México, D.F., Mexico

2 Now in: Seismological Laboratory, 252-21, California Institute of Technology, Pasadena, CA 91125, USA.

3 Centro de Geociencias, Campus UNAM Juriquilla, Apartado Postal 15, Boulevard Villas del Mesón S/N, Juriquilla, 76230 Querétaro, Qro.


ABSTRACT

Relationship between bathymetry and free-air gravity is analyzed by computing response function (admittance) for 7 shipborne profiles crossing the Tehuantepec ridge (TR). The age of the lithosphere at the time of bathymetric loading of the TR is deduced from the experimental admittance and the elastic thickness, Te. Admittance is interpreted in terms of isotropic elastic plate thick-ness. The oceanic lithosphere is assumed to behave as an elastic plate 10±5 km thick. Low admittances at low wave-numbers suggest that TR is isostatically compensated. We estimate a median value of 8 Ma (in the interval 2-17 Ma) for the age of oceanic lithosphere at the time of TR onset.

KEY WORDS: Tehuantepec ridge; elastic thickness; admittance; gravity modeling

RESUMEN

La relación entre la batimetría y la anomalía de gravedad de aire libre se analizó por medio del método de la admitancia para 7 perfiles que cruzan la cordillera de Tehuantepec. La evaluación de la edad de la litosfera para el tiempo cuando se formó la cordillera de Tehuantepec se calculó a través de los análisis de la admitancia experimental y del espesor elástico. Se calculó la admitancia, interpretada en términos del espesor elástico isótropo de la placa de Cocos debajo de la cordillera de Tehuantepec. El modelo de compensación isostática más apropiado para ajustar los datos observados es el de una litosfera oceánica que se comporta como una placa elástica con un espesor de 10±5 km. La forma de la admitancia (con valores bajos para longitudes de onda grandes) sugiere que la cordillera está compensada isostáticamente. La relación entre la edad de la litosfera oceánica y el espesor elástico para una temperatura de corte de 450 °C, da una estimación mediana de 8 Ma (en un intervalo de 2-17 Ma) para el momento de formación de la cordillera de Tehuantepec sobre la placa de Cocos.

PALABRAS CLAVE: Cordillera de Tehuantepec; espesor elástico; admitancia; modelación gravimétrica

Full text available only in PDF format.

BIBLIOGRAPHY

AUBOUIN, J.; R. VON HUENE et al., 1982. Initial Reports. Deep Sea Drilling Project, v. 67, Washington (U.S. Govt. Printing Office). [ Links ]

COUCH, R. and S. WOODCOCK, 1981. Gravity structure of the continental margins of southwestern Mexico and northwestern Guatemala. J. Geophys. Res., 86, 1829-1840. [ Links ]

DSDP LEG 66. SHIPBOARD PARTY, 1979. Middle America Trench. Geotimes, 24, 20-22. [ Links ]

DSDP LEG 84. SHIPBOARD PARTY, 1982. Challenger drills again off Guatemala. Geotimes, 27, 23-25. [ Links ]

GEODAS v. 4.0, Marine Trackline Geophysics. U.S. Department of Commerce, National Oceanic and Atmospheric Administration. [ Links ]

HERRON, E. M., 1972. Sea-floor spreading and the Cenozoic history of the east central Pacific. GSA Bulletin, 83, 1671-1692. [ Links ]

KLITGORD, K. D. and J. MAMMERICKX, 1982. Northern east Pacific Rise; magnetic anomaly and bathymetric framework. J. Geophys. Res., 87, 138, 6725-6750. [ Links ]

KOGAN, M. G. and V. KOSTOGLODOV, 1981. Isostasy of Fracture Zones in the Atlantic Ocean. J. Geophys. Res., 86, 9248-9258. [ Links ]

MANEA, M.; V. C. MANEA and V. KOSTOGLODOV, 2003. Sediment Fill of the Middle America Trench Inferred from the Gravity Anomalies. Geofís. Int ., 42, 4, 603-612. [ Links ]

MENARD, H. W. and R. L. FISHER, 1958. Clipperton fracture zone in the northeastern equatorial Pacific. J. Geol., 66, 3, 239-253. [ Links ]

PARSONS, B. and J. G. SCLATER, 1977. An analysis of the variations of ocean floor bathymetry with age. J. Geophys. Res., 82, 803-827. [ Links ]

SMITH, W. H. F. and D. T. SANDWELL, 1997. Global sea-floor topography from satellite altimetry and ship depth soundings. Science, 277, 1957-1962. [ Links ]

TAMSETT, D., 1984. An application of the response technique to profiles of bathymetry and gravity in the Gulf of Aden. Geophys. Res. Lett. Astron. Soc., 78, 349-369. [ Links ]

TRUCHAN, M. and R. L. LARSON, 1973. Tectonic lineaments on the Cocos Plate. Earth Planet. Sci. Lett., 17, 46-432. [ Links ]

TURCOTTE, D. L. and G. SCHUBERT, 1982. Geodynamics, Applications of continuum Physics to Geological Problems. Wiley, New York, NY. [ Links ]

WATTS, A. B., 1978. An analysis of isostasy in the World's oceans. 1. Hawaiia Emperor seamount chain. J. Geophys. Res., 83, 5989-6004. [ Links ]

WATTS, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press. [ Links ]

WESSEL, P., 1989. XOVER: A Cross-over error detector for track data. Computers and Geoscience, 15, 333-346. [ Links ]

WESSEL, P. and A. B. WATTS, 1988. On the accuracy of marine gravity measurements. J. Geophys. Res., 93, 393-413, Table A1. [ Links ]

WILSON, D. S., 1996. Fastest known spreading on the Miocene Cocos-Pacific plate boundary. Geophys. Res. Lett., 23, 21, 3003-3006. [ Links ]

Received: March 23, 2004; Accepted: October 14, 2004

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License