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The Klein-Gordon equation with the Woods-Saxon potential well
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We solve the Klein-Gordon equation in the presence of a spatially one-dimensional Woods-Saxon potential. The bound state solution:
derived. The pair creation mechanism and the antiparticle bound state are discussed.

Keywords:Klein-Gordon equation; Woods-Saxon potential.

Se resuelve la ecudri de Klein-Gordon para el potencial de Woods-Saxon unidimensional independiente del tiempo. Se derivan |
soluciones para los estados ligados. Se discute la tredeipares y los estados ligados de anfipalds.

Descriptores:Ecuacon de Klein-Gordon; potencial de Woods-Saxon.
PACS: 03.65.Pm; 03.65.Ge; 03.65.Nk

1. Introduction 4. Bound states

The discussion of the overcritical behavior of bosons require$ONSider the bound states solutions fox 0. We solve the
a full understanding of the single particle spectrum. For shorfliférential equation

range potentials, the solutions of the Klein-Gordon equa- 424, (z) Vo 2

tion can exhibit spontaneous production of antiparticles asw+ (E + 1+6‘“<”“>> — 1| ¢r(x) =0. (3)
the strength of an external potential reaches a certain value

Vo [1]. In 1940, Schiff, Snyder and Weinberg [2] carried
out one of the earliest investigations of the solution of the

Upon making the substitutiogr ' =14 ¢~ %(=+L) Eq. (3)

Klein-Gordon equation with a strong external potential. TheybeComeS
solved the problem of the square well potential and discov- ay(1 — y)i [y(l —v) dd’L(y)}
ered that there is a critical poift,. where the bound antipar- dy dy

ticle mode appears to coalesce with the bound particle. In
1979, Bawin [3] showed that the antiparticle p-wave bound
state arises for some conditions on the potential parameters.

In the present article, we solve the Klein-Gordon equation for Settingq&ﬂy) =y7(1 - .y)_"yh(y) and substituting into
the Woods-Saxon potential well. We show that the antiparEd-(4), We obtain that(y) satisfies the hypergeometric equa-

ticle bound states arise also for the Woods-Saxon potentiafl©n:

which is a smoothed out form of the square well potential. (1 — y)n” + [(1 + 20) — 2(c + v + 1)y]K
We also show how overcritical effects depend on the shape of
the short range potential. —3t+o+ty+NE+o+y=-AN)h=0, (5

+[(B+Voy? = 1] orm) =0. @

2. The Klein-Gordon equation where the primes denote derivates with respegtdad

The one-dimensional Klein-Gordon equation to solve is, in o = v1i- EQ, (6)
natural unitsh = ¢ = m =1 [4], a
d*¢() X

+ [(E V(@)? - 1} o(z)=0. (1)

dx?

3. The Woods-Saxon potential

The Woods-Saxon potential is defined as [5]

O(=x) O(z)
1+ e—a(z+L) 1+ ea(z—L)

V(z) =Vo [ } N )

whereVj is real and positive for a barrier or negative for a
well potential;a > 0 andL > 0 are real and positived(z)

is the Heaviside step function. The parametatefines the FIGURE 1. The Woods-Saxon potential barrier fér = 2 with
shape of the barrier or well. The form of the Woods-Saxona = 10 (solid line) anda = 3 (dotted line).

potential is showed in the Fig. 1.
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Asz — —oo,y — 0 andz — oo, z — 0. We choose the

VI-(E+W)? | Ve 4V02' (7)  regular wave functions
a

T 2a
Equation (5) has the general solution [6] or(y)=a1y’ (1-y)", Fy
1 1
h(y)=ai2F1 (2+“/+0—)\, 5 TrtotA, 1420, y) X (; +y+0 - % +y+o0+ A1+ 20; 3/)

oy (1
+agy 2 2F1(2

1 1
so that X (—’Y—FU—/\, 5—’}/+U—|—)\, 14+20; z) (15)

2
or(y)=a1y” (1—y)7, F1

+y—0—A, %‘f"}’—o—i—)\, 1—20; y) (8) Or(2)=b127(1-2)"", 1

In order to find the energy eigenvalues, we impose the
condition that the right and left wave functions and their first

derivatives must be matchedat= 0. This condition leads

1 1
X 5—1—7—1—0—/\, §—|—7—|—0+/\, 14+20;y

L to
ta2y”(1-y)" 2 Fy
1 1 oA (R o
X <2+’Y—U—/\, 2+")/—O'+>\,1—2O';y). (9) 1420 2 v 2 gl
Now we consider the solution far > 0. We solve the y Py (3+7+0=X, §+y+0+A, 2420, (1+e~*H) )
diferential equation By (A +vy+0-X, 3+y+0+A, 1420, (14+e-aL) 1)
ot (o) (e )
- = + | s—vto=A)( s—vto+A
72 + || E+ T oot D) 1| ¢r(x) =0. (10) 5 Y 5 7
3_ _)\ 3_ —al\—1
After making the substitution:=! = 1 + ea(@=L1), L (f vto /\’f Y+ A, 2420, (14e™) )
Eg. (10) can be written as: Fy (53=7+0—=X, 5—7+0+), 1420, (1+e~el)~1)
a?2(1 - z) [Z<1 —2) d"?ﬁﬂ +20 (1+e~*) =0, (16)

+ {(E +Vp2)? — 1} or(z)=0. (11) which is the eigenvalue condition for energy E. The explicit
solutions of Eqg. (16), giving E in terms &f,, can be deter-
Introducing¢r(z) = 27(1 — 2z)~7g(z) and substituting Mined numerically. We consider the range¢ < E < 1 for
it into Eq. (11), we obtain thapr(z) satisfies the hypergeo- the values ofe. Some aspects of the dependence of the spec-

metric equation: trum of bound states on the potential strengghare shown
. ) in Figs. 2 and 3. At some value &f,, a bound antiparticle
z(1—2)g" +[(1+20) —2(c — v+ 1)z]g state appears, it joins with the bound particle state, they form

(1 _ A) (2 v — N a=0.(12 a state with zero norm dty = V,,, and then both vanish
G+o—7+N)+o-7-4g=0(12) from the spectrum.
where the prime denotes a derivative with respect.tdhe
general solution of Eq. (12) is [6] 1 20.988

1 1
9(2)=b1, Fy <2—7—|—a—>\, 5—7—1—04—)\, 1+20; z>

-0.990

1 1
+byz 2P [ =—y—0—\, =—y—0+\, 12032 |, (13)
2 2 0992
O_
so that =
— -0.994
¢R(Z) = b1ZU(1 — Z) 72F1
1 1
><(2—7+0—)\72—7+J+>\,1+20;Z) -0.99
n bgz_a(l _ Z)_’YQFl 'l() | |1 ) é 2.0900 Vo 2.0908
1 1 Vo
X (—7—0—)\, ——y—0+A\, 1-20; z) (14)
2 2 FIGURE 2. Bound-state spectrum fdr = 2, a = 10.
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FIGURE 5. Turning point vsVg, for L = 2.
FIGURE 3. Bound-state spectrum fdr = 2, a = 2.
N < 0 respectively. FotN = 0, both solutions meet and
have the same energy. Antiparticle states appear in all the
cases considered. Far= 2, we moved the shape parame-
tera from 1 to 18 and, forL = 1, we considered. = 10.
Figures 4 and 5 show the behavior of the turning poii
versus the potential parameterand V; respectively. Fig-
ure 4 shows that, as the valuewihcreases, the energy value
for which antiparticle states appear increases. In Fig. 5 we
observe that, as the value ©f increases, the energy value
for which antiparticle states appear decreases. This behavior
indicates that well potentials exhibit antiparticle bound states
for values ofFE larger than for smoothed out potentials.
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. _ 5. Conclusions
FIGURE 4. Turning point vs a, fol, = 2.
The Woods-Saxon potential, analogous to the square well po-

The normalization of the wave functions (15) is given by tential, shows antiparticle bound states. The turning point,

o0

. where the norm of the state is zero, depends on the potential
N =2 / dz[E =V (z)]o(x)" d(x), 17) parametera andVy. The results reported in this article show
—o0 that the Woods-Saxon potential exhibits a behavior charac-

The norm of the Klein-Gordon equation vanished/at, teristic of short range potentials [7].
where both possible solutiofit) and E(—) meet.
Figure 2 shows that fo2.0900 < V5 < 2.0908 two
states appear, one with positive energy and another with negAcknowledgment
ative energy. In Fig. 3 the same behavior is observed for
2.3462 < V, < 2.3463. Particle bound states(*)) and  This work was supported by FONACIT under project G-
antiparticle bound statest(~)) correspond taV > 0 and  2001000712.
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