The Klein-Gordon equation with the Woods-Saxon potential well

C. Rojas and V.M. Villalba
Centro de Física, IVIC, Apartado 21827, Caracas 1020A, Venezuela

Recibido el 10 de diciembre de 2001; aceptado el 20 de abril de 2005

We solve the Klein-Gordon equation in the presence of a spatially one-dimensional Woods-Saxon potential. The bound state solutions are derived. The pair creation mechanism and the antiparticle bound state are discussed.

Keywords: Klein-Gordon equation; Woods-Saxon potential.

Se resuelve la ecuación de Klein-Gordon para el potencial de Woods-Saxon unidimensional independiente del tiempo. Se derivan las soluciones para los estados ligados. Se discute la creación de pares y los estados ligados de antipartículas.

Descripciones: Ecuación de Klein-Gordon; potencial de Woods-Saxon.

PACS: 03.65.Pm; 03.65.Ge; 03.65.Nk

1. Introduction

The discussion of the overcritical behavior of bosons requires a full understanding of the single particle spectrum. For short range potentials, the solutions of the Klein-Gordon equation can exhibit spontaneous production of antiparticles as the strength of an external potential reaches a certain value \(V_0 \) [1]. In 1940, Schiff, Snyder and Weinberg [2] carried out one of the earliest investigations of the solution of the Klein-Gordon equation with a strong external potential. They solved the problem of the square well potential and discovered that there is a critical point where the bound antiparticle mode appears to coalesce with the bound particle. In 1979, Bawin [3] showed that the antiparticle p-wave bound state arises for some conditions on the potential parameters. In the present article, we solve the Klein-Gordon equation for the Woods-Saxon potential well. We show that the antiparticle bound states arise also for the Woods-Saxon potential, which is a smoothed out form of the square well potential. We also show how overcritical effects depend on the shape of the short range potential.

2. The Klein-Gordon equation

The one-dimensional Klein-Gordon equation to solve is, in natural units \(\hbar = c = m = 1 \) [4],

\[
\frac{d^2 \phi(x)}{dx^2} + \left[(E - V(x))^2 - 1 \right] \phi(x) = 0. \quad (1)
\]

3. The Woods-Saxon potential

The Woods-Saxon potential is defined as [5]

\[
V(x) = V_0 \left[\frac{\Theta(-x)}{1 + e^{-a(x+L)}} + \frac{\Theta(x)}{1 + e^{a(x-L)}} \right], \quad (2)
\]

where \(V_0 \) is real and positive for a barrier or negative for a well potential; \(a > 0 \) and \(L > 0 \) are real and positive. \(\Theta(x) \) is the Heaviside step function. The parameter \(a \) defines the shape of the barrier or well. The form of the Woods-Saxon potential is showed in the Fig. 1.

4. Bound states

Consider the bound states solutions for \(x < 0 \). We solve the differential equation

\[
\frac{d^2 \phi_L(x)}{dx^2} + \left[(E + \frac{V_0}{1 + e^{-a(x+L)}})^2 - 1 \right] \phi_L(x) = 0. \quad (3)
\]

Upon making the substitution \(y^{-1} = 1 + e^{-a(x+L)} \), Eq. (3) becomes

\[
a^2 y(1-y) \frac{d}{dy} \left[y(1-y) \frac{d \phi_L(y)}{dy} \right] + \left[(E + V_0y)^2 - 1 \right] \phi_L(y) = 0. \quad (4)
\]

Setting \(\phi_L(y) = y^{\sigma} (1-y)^{\gamma} h(y) \) and substituting into Eq. (4), we obtain that \(h(y) \) satisfies the hypergeometric equation:

\[
y(1-y)h'' + [(1 + 2\sigma) - 2(\sigma + \gamma + 1)y]h' - (\sigma + \gamma + \lambda) (\sigma + \gamma + \lambda - \lambda) h = 0, \quad (5)
\]

where the primes denote derivates with respect to \(y \) and

\[
\sigma = \sqrt{1 - E^2/a^2}, \quad (6)
\]

![Figura 1. El potencial de Woods-Saxon para \(L = 2 \) con \(a = 10 \) (línea sólida) y \(a = 3 \) (línea punteada).](image)
\[\gamma = \sqrt{1 - (E + V_0)^2}, \quad \lambda = \sqrt{a^2 - 4V_0^2}. \] (7)

Equation (5) has the general solution [6]

\[h(y) = a_1 y F_1 \left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y \right) \]

\[+ a_2 y^{-2\sigma} F_1 \left(\frac{1}{2} + \gamma - \sigma - \lambda, \frac{1}{2} + \gamma - \sigma + \lambda, 1 - 2\sigma; y \right), \] (8)

so that

\[\phi_L(y) = a_1 y^{\gamma} (1-y)^{1+\lambda} F_1 \]

\[\times \left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y \right) \]

\[+ a_2 y^{-\sigma} (1-y)^{1+\lambda} F_1 \]

\[\times \left(\frac{1}{2} + \gamma - \sigma - \lambda, \frac{1}{2} + \gamma - \sigma + \lambda, 1 - 2\sigma; y \right). \] (9)

Now we consider the solution for \(x > 0 \). We solve the differential equation

\[\frac{d^2 \phi_R(x)}{dx^2} + \left[\left(E + \frac{V_0}{1 + e^{a(x-L)}} \right)^2 - 1 \right] \phi_R(x) = 0. \] (10)

After making the substitution \(z^{-1} = 1 + e^{a(x-L)} \), Eq. (10) can be written as:

\[a^2 z(1-z) \frac{d^2 \phi_R(z)}{dz^2} \]

\[+ \left[(E + V_0 z)^2 - 1 \right] \phi_R(z) = 0. \] (11)

Introducing \(\phi_R(z) = z^\sigma (1-z)^{-\gamma} g(z) \) and substituting it into Eq. (11), we obtain that \(\phi_R(z) \) satisfies the hypergeometric equation:

\[z(1-z) g'' + \left[(1 + 2\sigma) - 2(\sigma - \gamma + 1) \right] g' \]

\[- (\frac{1}{2} + \sigma - \gamma + \lambda)(\frac{1}{2} + \sigma - \gamma - \lambda) g = 0, \] (12)

where the prime denotes a derivative with respect to \(z \). The general solution of Eq. (12) is [6]

\[g(z) = b_1 F_1 \left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z \right) \]

\[+ b_2 z^{-2\sigma} F_1 \left(\frac{1}{2} - \gamma - \sigma - \lambda, \frac{1}{2} - \gamma - \sigma + \lambda, 1 - 2\sigma; z \right), \] (13)

so that

\[\phi_R(z) = b_1 z^{\sigma} (1-z)^{-\gamma} F_1 \]

\[\times \left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z \right) \]

\[+ b_2 z^{-\sigma} (1-z)^{-\gamma} F_1 \]

\[\times \left(\frac{1}{2} - \gamma - \sigma - \lambda, \frac{1}{2} - \gamma - \sigma + \lambda, 1 - 2\sigma; z \right). \] (14)

As \(x \to -\infty, y \to 0 \) and \(x \to \infty, z \to 0 \). We choose the regular wave functions

\[\phi_L(y) = a_1 y^{\gamma} (1-y)^{1+\lambda} F_1 \]

\[\times \left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y \right) \]

\[\phi_R(z) = b_1 z^{\sigma} (1-z)^{-\gamma} F_1 \]

\[\times \left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z \right) \] (15)

In order to find the energy eigenvalues, we impose the condition that the right and left wave functions and their first derivatives must be matched at \(x = 0 \). This condition leads to

\[\frac{1}{1 + 2\sigma} \left[\left(\frac{1}{2} + \gamma + \sigma - \lambda \right) \left(\frac{1}{2} + \gamma + \sigma + \lambda \right) \right. \]

\[\times F_1 \left(\frac{3}{2} + \gamma + \sigma - \lambda, \frac{3}{2} + \gamma + \sigma + \lambda, 2 + 2\sigma, (1 + e^{-aL})^{-1} \right) \]

\[\left. + \left(\frac{1}{2} - \gamma + \sigma - \lambda \right) \left(\frac{1}{2} - \gamma + \sigma + \lambda \right) \right] \]

\[\times F_1 \left(\frac{3}{2} - \gamma + \sigma - \lambda, \frac{3}{2} - \gamma + \sigma + \lambda, 2 + 2\sigma, (1 + e^{-aL})^{-1} \right) \]

\[+ 2\sigma (1 + e^{-aL}) = 0, \] (16)

which is the eigenvalue condition for energy \(E \). The explicit solutions of Eq. (16), giving \(E \) in terms of \(V_0 \), can be determined numerically. We consider the range \(-1 < E < 1\) for the values of \(E \). Some aspects of the dependence of the spectrum of bound states on the potential strength \(V_0 \) are shown in Figs. 2 and 3. At some value of \(V_0 \), a bound antiparticle state appears, it joins with the bound particle state, they form a state with zero norm at \(V_0 = V_{cr} \), and then both vanish from the spectrum.
The normalization of the wave functions (15) is given by

\[N = 2 \int_{-\infty}^{\infty} dx [E - V(x)] \phi(x)^* \phi(x), \quad (17) \]

The norm of the Klein-Gordon equation vanishes at \(V_{cr} \), where both possible solution \(E^{(+)} \) and \(E^{(-)} \) meet.

Figure 2 shows that for \(2.0900 < V_0 < 2.0908 \) two states appear, one with positive energy and another with negative energy. In Fig. 3 the same behavior is observed for \(2.3462 < V_0 < 2.3463 \). Particle bound states \((E^{(+)}) \) and antiparticle bound states \((E^{(-)}) \) correspond to \(N > 0 \) and \(N < 0 \) respectively. For \(N = 0 \), both solutions meet and have the same energy. Antiparticle states appear in all the cases considered. For \(L = 2 \), we moved the shape parameter \(a \) from 1 to 18 and, for \(L = 1 \), we considered \(a = 10 \). Figures 4 and 5 show the behavior of the turning point \((E) \) versus the potential parameters \(a \) and \(V_0 \) respectively. Figure 4 shows that, as the value of \(a \) increases, the energy value for which antiparticle states appear increases. In Fig. 5 we observe that, as the value of \(V_0 \) increases, the energy value for which antiparticle states appear decreases. This behavior indicates that well potentials exhibit antiparticle bound states for values of \(E \) larger than for smoothed out potentials.

5. Conclusions

The Woods-Saxon potential, analogous to the square well potential, shows antiparticle bound states. The turning point, where the norm of the state is zero, depends on the potential parameters \(a \) and \(V_0 \). The results reported in this article show that the Woods-Saxon potential exhibits a behavior characteristic of short range potentials [7].

Acknowledgment

This work was supported by FONACIT under project G-2001000712.

2. L.I. Schiff, H. Snyder, and J. Weinberg, Phys. Rev. 57 (1940) 315.