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The Klein-Gordon equation with the Woods-Saxon potential well
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We solve the Klein-Gordon equation in the presence of a spatially one-dimensional Woods-Saxon potential. The bound state solutions are
derived. The pair creation mechanism and the antiparticle bound state are discussed.
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Se resuelve la ecuación de Klein-Gordon para el potencial de Woods-Saxon unidimensional independiente del tiempo. Se derivan las
soluciones para los estados ligados. Se discute la creación de pares y los estados ligados de antipartı́culas.
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1. Introduction

The discussion of the overcritical behavior of bosons requires
a full understanding of the single particle spectrum. For short
range potentials, the solutions of the Klein-Gordon equa-
tion can exhibit spontaneous production of antiparticles as
the strength of an external potential reaches a certain value
V0 [1]. In 1940, Schiff, Snyder and Weinberg [2] carried
out one of the earliest investigations of the solution of the
Klein-Gordon equation with a strong external potential. They
solved the problem of the square well potential and discov-
ered that there is a critical pointVcr where the bound antipar-
ticle mode appears to coalesce with the bound particle. In
1979, Bawin [3] showed that the antiparticle p-wave bound
state arises for some conditions on the potential parameters.
In the present article, we solve the Klein-Gordon equation for
the Woods-Saxon potential well. We show that the antipar-
ticle bound states arise also for the Woods-Saxon potential,
which is a smoothed out form of the square well potential.
We also show how overcritical effects depend on the shape of
the short range potential.

2. The Klein-Gordon equation

The one-dimensional Klein-Gordon equation to solve is, in
natural units~ = c = m = 1 [4],

d2φ(x)
dx2

+
[
(E − V (x))2 − 1

]
φ(x) = 0. (1)

3. The Woods-Saxon potential

The Woods-Saxon potential is defined as [5]

V (x) = V0

[
Θ(−x)

1 + e−a(x+L)
+

Θ(x)
1 + ea(x−L)

]
, (2)

whereV0 is real and positive for a barrier or negative for a
well potential;a > 0 andL > 0 are real and positive.Θ(x)
is the Heaviside step function. The parametera defines the
shape of the barrier or well. The form of the Woods-Saxon
potential is showed in the Fig. 1.

4. Bound states
Consider the bound states solutions forx < 0. We solve the
diferential equation

d2φL(x)
dx2

+

[(
E +

V0

1 + e−a(x+L)

)2

− 1

]
φL(x) = 0. (3)

Upon making the substitutiony−1=1+e−a(x+L), Eq. (3)
becomes

a2y(1− y)
d

dy

[
y(1− y)

dφL(y)
dy

]

+
[
(E + V0y)2 − 1

]
φL(y) = 0. (4)

SettingφL(y) = yσ(1 − y)γh(y) and substituting into
Eq.(4), we obtain thath(y) satisfies the hypergeometric equa-
tion:

y(1− y)h′′ + [(1 + 2σ)− 2(σ + γ + 1)y]h′

− ( 1
2 + σ + γ + λ) ( 1

2 + σ + γ − λ)h = 0, (5)

where the primes denote derivates with respect toy and

σ =
√

1− E2

a
, (6)

FIGURE 1. The Woods-Saxon potential barrier forL = 2 with
a = 10 (solid line) anda = 3 (dotted line).
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γ =

√
1− (E + V0)2

a
, λ =

√
a2 − 4V 2

0

2a
. (7)

Equation (5) has the general solution [6]

h(y)=a12F1

(
1
2
+γ+σ−λ,

1
2
+γ+σ+λ, 1+2σ; y

)

+a2y
−2σ

2F1

(
1
2
+γ−σ−λ,

1
2
+γ−σ+λ, 1− 2σ; y

)
, (8)

so that

φL(y)=a1y
σ(1−y)γ

2F1

×
(

1
2
+γ+σ−λ,

1
2
+γ+σ+λ, 1+2σ; y

)

+a2y
−σ(1−y)γ

2F1

×
(

1
2
+γ−σ−λ,

1
2
+γ−σ+λ, 1−2σ; y

)
. (9)

Now we consider the solution forx > 0. We solve the
diferential equation

d2φR(x)
dx2

+

[(
E +

V0

1 + ea(x−L)

)2

− 1

]
φR(x) = 0. (10)

After making the substitutionz−1 = 1 + ea(x−L),
Eq. (10) can be written as:

a2z(1− z) d
dz

[
z(1− z)dφR(z)

dz

]

+
[
(E + V0z)2 − 1

]
φR(z) = 0. (11)

IntroducingφR(z) = zσ(1 − z)−γg(z) and substituting
it into Eq. (11), we obtain thatφR(z) satisfies the hypergeo-
metric equation:

z(1− z)g′′ + [(1 + 2σ)− 2(σ − γ + 1)z]g′

− ( 1
2 + σ − γ + λ) ( 1

2 + σ − γ − λ) g = 0, (12)

where the prime denotes a derivative with respect toz. The
general solution of Eq. (12) is [6]

g(z)=b12F1

(
1
2
−γ+σ−λ,

1
2
−γ+σ+λ, 1+2σ; z

)

+b2z
−2σ

2F1

(
1
2
−γ−σ−λ,

1
2
−γ−σ+λ, 1−2σ; z

)
, (13)

so that

φR(z) = b1z
σ(1− z)−γ

2F1

×
(

1
2
− γ + σ − λ,

1
2
− γ + σ + λ, 1 + 2σ; z

)

+ b2z
−σ(1− z)−γ

2F1

×
(

1
2
−γ−σ−λ,

1
2
−γ−σ+λ, 1−2σ; z

)
. (14)

As x → −∞, y → 0 andx →∞, z → 0. We choose the
regular wave functions

φL(y)=a1y
σ(1−y)γ

2F1

×
(

1
2

+ γ + σ − λ,
1
2

+ γ + σ + λ, 1 + 2σ; y
)

φR(z)=b1z
σ(1−z)−γ

2F1

×
(

1
2
−γ+σ−λ,

1
2
−γ+σ+λ, 1+2σ; z

)
(15)

In order to find the energy eigenvalues, we impose the
condition that the right and left wave functions and their first
derivatives must be matched atx = 0. This condition leads
to

1
1+2σ

[(
1
2
+γ+σ−λ

)(
1
2
+γ+σ+λ

)

×F1

(
3
2+γ+σ−λ, 3

2+γ+σ+λ, 2+2σ, (1+e−aL)−1
)

F1

(
1
2+γ+σ−λ, 1

2+γ+σ+λ, 1+2σ, (1+e−aL)−1
)

+
(

1
2
−γ+σ−λ

)(
1
2
−γ+σ+λ

)

×F1

(
3
2−γ+σ−λ, 3

2−γ+σ+λ, 2+2σ, (1+e−aL)−1
)

F1

(
1
2−γ+σ−λ, 1

2−γ+σ+λ, 1+2σ, (1+e−aL)−1
)
]

+2σ
(
1+e−aL

)
=0, (16)

which is the eigenvalue condition for energy E. The explicit
solutions of Eq. (16), giving E in terms ofV0, can be deter-
mined numerically. We consider the range−1 < E < 1 for
the values ofE. Some aspects of the dependence of the spec-
trum of bound states on the potential strengthV0 are shown
in Figs. 2 and 3. At some value ofV0, a bound antiparticle
state appears, it joins with the bound particle state, they form
a state with zero norm atV0 = Vcr, and then both vanish
from the spectrum.

FIGURE 2. Bound-state spectrum forL = 2, a = 10.
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FIGURE 3. Bound-state spectrum forL = 2, a = 2.

FIGURE 4. Turning point vs a, forL = 2.

The normalization of the wave functions (15) is given by

N = 2

∞∫

−∞
dx[E − V (x)]φ(x)∗φ(x), (17)

The norm of the Klein-Gordon equation vanishes atVcr,
where both possible solutionE(+) andE(−) meet.

Figure 2 shows that for2.0900 < V0 < 2.0908 two
states appear, one with positive energy and another with neg-
ative energy. In Fig. 3 the same behavior is observed for
2.3462 < V0 < 2.3463. Particle bound states (E(+)) and
antiparticle bound states (E(−)) correspond toN > 0 and

FIGURE 5. Turning point vsV0, for L = 2.

N < 0 respectively. ForN = 0, both solutions meet and
have the same energy. Antiparticle states appear in all the
cases considered. ForL = 2, we moved the shape parame-
ter a from 1 to 18 and, forL = 1, we considereda = 10.
Figures 4 and 5 show the behavior of the turning point(E)
versus the potential parametersa andV0 respectively. Fig-
ure 4 shows that, as the value ofa increases, the energy value
for which antiparticle states appear increases. In Fig. 5 we
observe that, as the value ofV0 increases, the energy value
for which antiparticle states appear decreases. This behavior
indicates that well potentials exhibit antiparticle bound states
for values ofE larger than for smoothed out potentials.

5. Conclusions

The Woods-Saxon potential, analogous to the square well po-
tential, shows antiparticle bound states. The turning point,
where the norm of the state is zero, depends on the potential
parametersa andV0. The results reported in this article show
that the Woods-Saxon potential exhibits a behavior charac-
teristic of short range potentials [7].
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