

The Klein-Gordon equation with the Woods-Saxon potential well

C. Rojas and V.M. Villalba

Centro de Física, IVIC,

Apartado 21827, Caracas 1020A, Venezuela

Recibido el 10 de diciembre de 2001; aceptado el 20 de abril de 2005

We solve the Klein-Gordon equation in the presence of a spatially one-dimensional Woods-Saxon potential. The bound state solutions are derived. The pair creation mechanism and the antiparticle bound state are discussed.

Keywords: Klein-Gordon equation; Woods-Saxon potential.

Se resuelve la ecuación de Klein-Gordon para el potencial de Woods-Saxon unidimensional independiente del tiempo. Se derivan las soluciones para los estados ligados. Se discute la creación de pares y los estados ligados de antipartículas.

Descriptores: Ecuación de Klein-Gordon; potencial de Woods-Saxon.

PACS: 03.65.Pm; 03.65.Ge; 03.65.Nk

1. Introduction

The discussion of the overcritical behavior of bosons requires a full understanding of the single particle spectrum. For short range potentials, the solutions of the Klein-Gordon equation can exhibit spontaneous production of antiparticles as the strength of an external potential reaches a certain value V_0 [1]. In 1940, Schiff, Snyder and Weinberg [2] carried out one of the earliest investigations of the solution of the Klein-Gordon equation with a strong external potential. They solved the problem of the square well potential and discovered that there is a critical point V_{cr} where the bound antiparticle mode appears to coalesce with the bound particle. In 1979, Bawin [3] showed that the antiparticle p-wave bound state arises for some conditions on the potential parameters. In the present article, we solve the Klein-Gordon equation for the Woods-Saxon potential well. We show that the antiparticle bound states arise also for the Woods-Saxon potential, which is a smoothed out form of the square well potential. We also show how overcritical effects depend on the shape of the short range potential.

2. The Klein-Gordon equation

The one-dimensional Klein-Gordon equation to solve is, in natural units $\hbar = c = m = 1$ [4],

$$\frac{d^2\phi(x)}{dx^2} + \left[(E - V(x))^2 - 1 \right] \phi(x) = 0. \quad (1)$$

3. The Woods-Saxon potential

The Woods-Saxon potential is defined as [5]

$$V(x) = V_0 \left[\frac{\Theta(-x)}{1 + e^{-a(x+L)}} + \frac{\Theta(x)}{1 + e^{a(x-L)}} \right], \quad (2)$$

where V_0 is real and positive for a barrier or negative for a well potential; $a > 0$ and $L > 0$ are real and positive. $\Theta(x)$ is the Heaviside step function. The parameter a defines the shape of the barrier or well. The form of the Woods-Saxon potential is showed in the Fig. 1.

4. Bound states

Consider the bound states solutions for $x < 0$. We solve the differential equation

$$\frac{d^2\phi_L(x)}{dx^2} + \left[\left(E + \frac{V_0}{1 + e^{-a(x+L)}} \right)^2 - 1 \right] \phi_L(x) = 0. \quad (3)$$

Upon making the substitution $y^{-1} = 1 + e^{-a(x+L)}$, Eq. (3) becomes

$$a^2 y(1-y) \frac{d}{dy} \left[y(1-y) \frac{d\phi_L(y)}{dy} \right] + \left[(E + V_0 y)^2 - 1 \right] \phi_L(y) = 0. \quad (4)$$

Setting $\phi_L(y) = y^\sigma(1-y)^\gamma h(y)$ and substituting into Eq.(4), we obtain that $h(y)$ satisfies the hypergeometric equation:

$$y(1-y)h'' + [(1+2\sigma) - 2(\sigma+\gamma+1)y]h' - (\frac{1}{2} + \sigma + \gamma + \lambda)(\frac{1}{2} + \sigma + \gamma - \lambda)h = 0, \quad (5)$$

where the primes denote derivates with respect to y and

$$\sigma = \frac{\sqrt{1-E^2}}{a}, \quad (6)$$

FIGURE 1. The Woods-Saxon potential barrier for $L = 2$ with $a = 10$ (solid line) and $a = 3$ (dotted line).

$$\gamma = \frac{\sqrt{1 - (E + V_0)^2}}{a}, \lambda = \frac{\sqrt{a^2 - 4V_0^2}}{2a}. \quad (7)$$

Equation (5) has the general solution [6]

$$h(y) = a_{12} {}_2F_1\left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y\right) + a_2 y^{-2\sigma} {}_2F_1\left(\frac{1}{2} + \gamma - \sigma - \lambda, \frac{1}{2} + \gamma - \sigma + \lambda, 1 - 2\sigma; y\right), \quad (8)$$

so that

$$\begin{aligned} \phi_L(y) &= a_1 y^\sigma (1-y)^\gamma {}_2F_1 \\ &\quad \times \left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y\right) \\ &\quad + a_2 y^{-\sigma} (1-y)^\gamma {}_2F_1 \\ &\quad \times \left(\frac{1}{2} + \gamma - \sigma - \lambda, \frac{1}{2} + \gamma - \sigma + \lambda, 1 - 2\sigma; y\right). \end{aligned} \quad (9)$$

Now we consider the solution for $x > 0$. We solve the differential equation

$$\frac{d^2\phi_R(x)}{dx^2} + \left[\left(E + \frac{V_0}{1 + e^{a(x-L)}} \right)^2 - 1 \right] \phi_R(x) = 0. \quad (10)$$

After making the substitution $z^{-1} = 1 + e^{a(x-L)}$, Eq. (10) can be written as:

$$\begin{aligned} a^2 z (1-z) \frac{d}{dz} \left[z (1-z) \frac{d\phi_R(z)}{dz} \right] \\ + \left[(E + V_0 z)^2 - 1 \right] \phi_R(z) = 0. \end{aligned} \quad (11)$$

Introducing $\phi_R(z) = z^\sigma (1-z)^{-\gamma} g(z)$ and substituting it into Eq. (11), we obtain that $\phi_R(z)$ satisfies the hypergeometric equation:

$$\begin{aligned} z(1-z)g'' + [(1+2\sigma) - 2(\sigma - \gamma + 1)z]g' \\ - (\frac{1}{2} + \sigma - \gamma + \lambda)(\frac{1}{2} + \sigma - \gamma - \lambda)g = 0, \end{aligned} \quad (12)$$

where the prime denotes a derivative with respect to z . The general solution of Eq. (12) is [6]

$$\begin{aligned} g(z) &= b_{12} {}_2F_1\left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z\right) \\ &+ b_2 z^{-2\sigma} {}_2F_1\left(\frac{1}{2} - \gamma - \sigma - \lambda, \frac{1}{2} - \gamma - \sigma + \lambda, 1 - 2\sigma; z\right), \end{aligned} \quad (13)$$

so that

$$\begin{aligned} \phi_R(z) &= b_1 z^\sigma (1-z)^{-\gamma} {}_2F_1 \\ &\quad \times \left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z\right) \\ &\quad + b_2 z^{-\sigma} (1-z)^{-\gamma} {}_2F_1 \\ &\quad \times \left(\frac{1}{2} - \gamma - \sigma - \lambda, \frac{1}{2} - \gamma - \sigma + \lambda, 1 - 2\sigma; z\right). \end{aligned} \quad (14)$$

As $x \rightarrow -\infty, y \rightarrow 0$ and $x \rightarrow \infty, z \rightarrow 0$. We choose the regular wave functions

$$\begin{aligned} \phi_L(y) &= a_1 y^\sigma (1-y)^\gamma {}_2F_1 \\ &\quad \times \left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma; y\right) \\ \phi_R(z) &= b_1 z^\sigma (1-z)^{-\gamma} {}_2F_1 \\ &\quad \times \left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma; z\right) \end{aligned} \quad (15)$$

In order to find the energy eigenvalues, we impose the condition that the right and left wave functions and their first derivatives must be matched at $x = 0$. This condition leads to

$$\begin{aligned} &\frac{1}{1+2\sigma} \left[\left(\frac{1}{2} + \gamma + \sigma - \lambda\right) \left(\frac{1}{2} + \gamma + \sigma + \lambda\right) \right. \\ &\times \left. \frac{F_1\left(\frac{3}{2} + \gamma + \sigma - \lambda, \frac{3}{2} + \gamma + \sigma + \lambda, 2 + 2\sigma, (1 + e^{-aL})^{-1}\right)}{F_1\left(\frac{1}{2} + \gamma + \sigma - \lambda, \frac{1}{2} + \gamma + \sigma + \lambda, 1 + 2\sigma, (1 + e^{-aL})^{-1}\right)} \right. \\ &+ \left. \left(\frac{1}{2} - \gamma + \sigma - \lambda\right) \left(\frac{1}{2} - \gamma + \sigma + \lambda\right) \right. \\ &\times \left. \frac{F_1\left(\frac{3}{2} - \gamma + \sigma - \lambda, \frac{3}{2} - \gamma + \sigma + \lambda, 2 + 2\sigma, (1 + e^{-aL})^{-1}\right)}{F_1\left(\frac{1}{2} - \gamma + \sigma - \lambda, \frac{1}{2} - \gamma + \sigma + \lambda, 1 + 2\sigma, (1 + e^{-aL})^{-1}\right)} \right] \\ &+ 2\sigma (1 + e^{-aL}) = 0, \end{aligned} \quad (16)$$

which is the eigenvalue condition for energy E . The explicit solutions of Eq. (16), giving E in terms of V_0 , can be determined numerically. We consider the range $-1 < E < 1$ for the values of E . Some aspects of the dependence of the spectrum of bound states on the potential strength V_0 are shown in Figs. 2 and 3. At some value of V_0 , a bound antiparticle state appears, it joins with the bound particle state, they form a state with zero norm at $V_0 = V_{cr}$, and then both vanish from the spectrum.

FIGURE 2. Bound-state spectrum for $L = 2, a = 10$.

FIGURE 3. Bound-state spectrum for $L = 2$, $a = 2$.FIGURE 4. Turning point vs a , for $L = 2$.

The normalization of the wave functions (15) is given by

$$N = 2 \int_{-\infty}^{\infty} dx [E - V(x)] \phi(x)^* \phi(x), \quad (17)$$

The norm of the Klein-Gordon equation vanishes at V_{cr} , where both possible solution $E^{(+)}$ and $E^{(-)}$ meet.

Figure 2 shows that for $2.0900 < V_0 < 2.0908$ two states appear, one with positive energy and another with negative energy. In Fig. 3 the same behavior is observed for $2.3462 < V_0 < 2.3463$. Particle bound states ($E^{(+)}$) and antiparticle bound states ($E^{(-)}$) correspond to $N > 0$ and

FIGURE 5. Turning point vs V_0 , for $L = 2$.

$N < 0$ respectively. For $N = 0$, both solutions meet and have the same energy. Antiparticle states appear in all the cases considered. For $L = 2$, we moved the shape parameter a from 1 to 18 and, for $L = 1$, we considered $a = 10$. Figures 4 and 5 show the behavior of the turning point (E) versus the potential parameters a and V_0 respectively. Figure 4 shows that, as the value of a increases, the energy value for which antiparticle states appear increases. In Fig. 5 we observe that, as the value of V_0 increases, the energy value for which antiparticle states appear decreases. This behavior indicates that well potentials exhibit antiparticle bound states for values of E larger than for smoothed out potentials.

5. Conclusions

The Woods-Saxon potential, analogous to the square well potential, shows antiparticle bound states. The turning point, where the norm of the state is zero, depends on the potential parameters a and V_0 . The results reported in this article show that the Woods-Saxon potential exhibits a behavior characteristic of short range potentials [7].

Acknowledgment

This work was supported by FONACIT under project G-2001000712.

1. J. Rafelski, L.P. Fulcher, and A. Klein, *Phys. Rep.* **38** (1978) 227.
2. L.I. Schiff, H. Snyder, and J. Weinberg, *Phys. Rev.* **57** (1940) 315.
3. M. Bawin, *Lett. Nuovo Cimento* **26** (1979) 586.
4. W. Greiner, *Relativistic Quantum Mechanics. Wave equations* (Springer, 1987).
5. P. Kennedy, *J. Phys. A* **35** (2002) 689.
6. M. Abramowitz and I.A. Stegun, *Handbook of Mathematical Functions* (Dover, 1965).
7. V.S. Popov, *Sov. Phys. JETP* **32** (1971) 526.