INTRODUCCIÓN
La región comprendida por los volcanes Nevado de Toluca y San Antonio, fue decretada como Parque Nacional en enero de 1936 por el presidente en turno, Lázaro Cárdenas. A partir de entonces se han realizado trabajos específicos en diferentes áreas del conocimiento, destacándose entre otros campos, el geológico estructural, con trabajos como los de Ferrari y col. (2012) y Norini y col. (2008); el biológico con las publicaciones de Franco, (2010) y Krasilnikov y col. (2013); y el cultural, con trabajos como los de Erreguerena y col. (2009) y el de Loera y Arriaga (2010), entre otros. Sin embargo, pocas referencias se pueden encontrar en el área de la geomorfologia, aún y cuando se han desarrollado algunos programas de ordenamiento territorial y planes de manejo de recursos, y se ha comprobado que la importancia de la caracterización geomorfológica, representa, entre otras ventajas, el conocimiento requerido para la instrumentación de programas relacionados con el uso y manejo del territorio, la planeación geográfica integral, la evaluación de paisajes y de escenarios relacionados con riesgos.
Por ello, el propósito de este trabajo se centra en la confección de cartografía geomorfológica en escala 1:50 000, del área recategorizada el 1 de octubre de 2013 como Area Natural Protegida. Los objetivos específicos se encaminaron en primer término, hacia el reconocimiento de la estructura geológica-estratigráfica que conformaron la zona de estudio, y en segundo término, en la construcción de una leyenda geomorfológica capaz de integrar elementos de orden estructural, volcánico y morfológico, de carácter erosivo y/o acumulativo, que se integra al nuevo mapa creado.
MATERIALES Y MÉTODOS
La primera etapa consistió en el acopio y revisión de materiales publicados, que abordaran aspectos de orden regional y local, que refieren aspectos como el origen geológico, petrológico, geomorfológico y estratigráfico del Sistema Volcánico Transversal y el Sistema Nevado de Toluca-San Antonio; con ellos se construyeron tablas que sintetizan el desarrollo evolutivo de la región. El proceso metodológico, seguido para la construcción de la carta geomorfológica, se ajustó a los planteamientos establecidos por Lugo (1989) y Espinosa y Arroyo (2011), centrándose en la construcción analógica de cartografía temática a escala 1:50 000. Con la información recabada, se construyó la leyenda preliminar, basada en los criterios de Palacio (1985), Peña (1997) y De-Pedraza (1997). Asimismo, se construyeron cartas temáticas de tipo altimétrico, de los sistemas de drenaje, de la energía del relieve y la profundidad de la disección; es decir cartografía morfológica y morfométrica en la misma escala de trabajo, y se verificaron en campo las unidades geomórficas. Una vez establecida la base cartográfica y la leyenda preliminar de la carta, la información espacial se transformó a un formato digital y se procesó en el sistema ArcMap10, en donde se estableció la leyenda definitiva para el documento.
RESULTADOS Y DISCUSIÓN
Elementos estructurales regionales
Los volcanes San Antonio y Nevado de Toluca han sido objeto de investigaciones y controversias en torno a su origen y evolución; sin embargo, existen puntos de encuentro, en donde se reconoce que a través de una fractura cortical se ha desarrollado el Sistema Volcánico Transversal, el cual, desde el punto de vista regional, se considera como una prolongación del sistema Clarión, que es afectado por la dinámica de la Placa del Caribe y la Norteamericana, la cual a su vez modifica la subducción de la Placa Pacífica y se asocia con sistemas de fallas regionales que han generado la formación de estratovolcanes, campos monogenéticos, estructuras escalonadas de tipo "Rift"; así como rasgos morfoestructurales que se reconocen a través de fracturas, fosas, arcos volcánicos y estructuras circulares de colapso, entre otras (Mooser y col., 1996; Ferrari y col., 2012; Capra y col., 2013).
El patrón general del sistema responde a una configuración paralela de estructuras disyuntivas en-echelon, en donde la intersección entre sistemas dominantes permitieron el desarrollo de zonas de debilidad y la consecuente inyección de magma en un sistema de campos volcánicos poli y monogenéticos (Blatter y Hammersley, 2010; Mazzarini y col., 2010; Verma y Luhr, 2010; Cebriá y col., 2011; Lenhardt y Götz, 2011; Bernal y col., 2011; Alberico y col., 2012; Folch, 2012; Ferrari y col., 2012; Lenharrdt y col., 2013; Capra y col., 2013).
Como consecuencia de la configuración del sistema general de los morfolineamientos locales y regionales, se formaron complejos volcánicos (Figura 1), entre los cuales se destacan: el Nevado de Colima y el Volcán de Fuego de Colima, localizados en Colima y Jalisco; los volcanes Ceboruco, Sanganguey y Santa María en Nayarit; los volcanes Tancítaro y Paricutín, en Michoacán; el Popocatépetl e Iztaccíhuatl en la cuenca de México; La Malinche en Tlaxcala, el Pico de Orizaba, Cofre de Perote y la Caldera de los Humeros en Veracruz, entre otros; además de campos monogenéticos como el Chichinautzin y Atlacomulco, localizados en el Distrito Federal y Estado de México de forma respectiva; y grabens como los ubicados en Chapala, Silao, Querétaro y Acambay, por referir algunos ejemplos.
El Sistema Nevado de Toluca-San Antonio
La conformación conceptual del origen y evolución del sistema volcánico local ha sido rica y exhaustiva, expuesta y cuestionada por diferentes científicos como Blommfield y Valastro (1977), Sielbert y Carrasco (2002), Arce y col. (2003), Quintanar y col. (2004), Szynkaruk y col. (2004), Gómez y col. (2005), Aceves y col. (2006), Ortega y col. (2008), Servando y Tilling (2008), Norini y col. (2008 y 2010), Bellotti y col. (2010), Capra y col. (2013), entre otros, quienes han realizado diversos estudios como: dataciones de materiales rocosos y orgánicos, así como estudios de columnas estratigráficas distribuidas en todos los flancos del Nevado de Toluca y regiones periféricas al mismo.
Los estudios referidos reconocen diferentes secuencias geológicas y estratigráficas que conforman el paisaje actual y que constituyen el basamento del edificio volcánico. En la Tabla 1 se presenta información que caracteriza a cada uno de los grupos estratigráficos superiores referidos; se indica la edad aproximada de cada formación y la constitución litológica.
*Construido con información de Bloomfield (1973); Bloomfield y Valastro (1974); Sánchez (1978); D'Antonio y col. (2008); Norini (2010); Arce y col. (2006); Aceves y col. (2006); Smith y col. (2009) y Caballero y Capra (2011).
Desde la perspectiva de la evolución morfogenética, se considera que los edificios se han formado a través de erupciones violentas y varios períodos de calma que dieron paso a la formación de depósitos heterogéneos de materiales que, al ser depositados, se han alterado por procesos de intemperismo, erosión y acumulación, relacionados con ambientes glaciares, periglaciares y fluviales. De forma particular, existen discrepancias en la cronología de las diferentes etapas evolutivas de los volcanes; ello es debido a que las recientes erupciones sepultaron evidencias de eventos geológicos pasados.
De acuerdo con Vázquez (2002) y Aceves y col. (2006), la síntesis de construcción y modificación del edificio volcánico del Nevado se representa en cinco etapas, caracterizadas por ciclos de construcción y destrucción; en éstas se describen procesos de estructuración del edificio, colapsos de caldera, erupciones explosivas y asociación en algunos casos, con eventos climáticos globales (Tabla 1). De acuerdo con ello, las etapas a saber son:
Primera etapa. Se tiene noción que la formación del primer edificio volcánico o estructura primitiva fue hace un millón de años. Se emplazó sobre el sistema de alineamientos NW-SE y se relaciona con los subsistemas de fracturas alineadas en dirección SW-NE y E-W. Se estima que el edificio supera los 5 000 m de altitud y se caracteriza por poseer una amplia chimenea y un cráter abierto. En esta fase se incorpora la Etapa "A" definida por Bloomfield y Valastro en 1974.
Segunda etapa. Ocurrida hace unos 100 000 años, se caracteriza por dos colapsos laterales al sur y sureste que produjeron dos avalanchas, la DAD1 que presenta isopacas de 10 m, y la DAD2 que formó a su vez los depósitos Pilcaya y El Mogote, que cubren una superficie superior a los 200 km2 (Aceves y col., 2006).
Tercera etapa. Se desarrolló entre 601000 años y 36 000 años atrás; presenta una intensa actividad con emanaciones de carácter peleano que rompen parte de la estructura superior del cráter del edificio. La actividad se acompaña del desarrollo de avalanchas, flujos de cenizas, así como de un colapso que permite el origen de la caldera, que presenta un eje que supera más de 1 km, y la destrucción de la parte superior del cono; asimismo, se generan potentes depósitos de sedimentos sobre las laderas, originados por las avalanchas piroclásticas y las cenizas de flujo y de caída; ello corresponde con la etapa "B" de Bloomfield y Valastro (1974).
Cuarta etapa. Ocurrida entre 43 000 años y 21 500 años atrás, desarrollándose una erupción pliniana en cuatro fases que formaron depósitos de pómez vesicular, a la cual Macías y col. (1997), fecharon y denominaron como el "Flujo de pómez rosado". En este período se formaron flujos de bloques y cenizas, generados por la destrucción de domos, los cuales fueron seguidos por el flujo "Pómez La Ciervita" y la erupción pliniana VEI-3 (por sus siglas en inglés, Volcanic Explosivity Index), que fue denominada por Bloomfield y Valastro (1977), como la "Formación Pómez Toluca Inferior (FPTI)", que fue datada entre 241000 y 21 760 años atrás, y clasificada en ocho eventos de caída y flujos intercalados (Capra y col., 2013). Algunos autores como Aceves y col. (2006) y Arce y col. (2003 y 2006), coinciden con el desarrollo paralelo de la erupción con la glaciación Serie MII.
La última etapa de formación fue caracterizada por depósitos de cenizas y una erupción vulcaniana ocurrida hace unos 15 000 años aproximadamente, fue seguida por otra erupción pliniana 2 000 años después, a la cual se le denominó "Pómez blanca intermedia". Esta secuencia fue seguida por una nueva erupción pliniana violenta, la cual fue datada por Bloomfield y Valastro (1974), y designada como "Formación Pómez Toluca Superior (FPTS)", que se caracterizó por el depósito de estratos de materiales volcanoclásticos superiores a 800 m de espesor; etapa conocida como "E" (Aceves y col., 2006).
La dirección de la explosión lateral fue hacia el NE, y como consecuencia de ello, se han localizado depósitos de pómez de caída a unos 100 km de distancia del cráter, definiendo la forma en herradura.
La edad del último evento explosivo ha sido replanteada en varias ocasiones dependiendo del método de datación empleado. Los valores más recientes publicados por Arce y col. (2013), muestran una edad de aproximadamente 10 500 años atrás.
Rasgos geomorfológicos del ANP
En el entendido que el relieve se define como una evidencia y manifestación de los procesos geológicos y de modelado superficial, resulta lógico comprender que los rasgos geomorfológicos que predominan en el Area Natural Protegida hacen referencia al desarrollo de procesos de modelado volcánico, glaciar, periglaciar y fluvial; algunos de ellos muestran evidencias de procesos de erosión, transporte, acumulación, control estructural y presencia de masas de hielo, entre otros. De acuerdo con lo anterior, la leyenda para la carta geomorfológica ha quedado estructurada con diez clases de relieve dominantes, como se observa en la carta correspondiente (Figura 2).
La leyenda del mapa geomorfológico se integra de la siguiente manera:
1. Elementos lineales de origen tectónico
Fracturas. Representan líneas de rompimiento entre las rocas, aunque éstas se encuentren sepultadas y se manifiesten en superficie, sobre este grupo se emplazan valles fluviales que desarrollan perfiles asimétricos.
Fracturas inferidas. Representan líneas de rompimiento entre las rocas que se han inferido a través del comportamiento del sistema de drenaje y/o distribución espacial litológica.
Falla transcurrente. Predomina un movimiento lateral horizontal izquierdo, en dirección NW - SE, con referencia al plano de falla. Se evidencia a través de las modificaciones del patrón fluvial en donde aparecen deformaciones en cabeceras de cauces de primer orden, y en afluentes de segundo y tercer orden en corrientes más desarrolladas.
2. Constitución de cimas y parteaguas
Sistema de cimas y parteaguas del Nevado de Toluca. Representa la parte más alta del volcán Nevado de Toluca; presenta una morfología vista en planta de "herradura", la cual se abre con orientación hacia el E, dirección sobre la cual el volcán dirigió la última erupción pliniana.
Sistema de cimas y parteaguas del volcán San Antonio. Pertenece a un sistema de cimas sobre las cuales se desarrolla la disección fluvial, presentando alta concentración de cauces y cabeceras escarpadas. La morfología de ésta tiende a ser asimétrica en planta y perfil, como resultado de la disección fluvial, que es favorecida por la presencia de fracturas.
3. Morfología volcánica: edifícios, relieve explosivo y efusivo
Se representa por geoformas de constitución volcánica de diferente geoquímica. Se caracterizan por mostrar morfología dómica que presenta pendientes superiores a los 350, coronas cupiformes y alturas variables.
Domos y edificios secundarios. Representan a un grupo de elevaciones con forma geométrica, relativamente simétrica, de tamaño diverso. El origen de los mismos se relaciona con actividad volcánica, en donde la extrusión de magma de composición intermedia y ácida forma laderas comprendidas entre los 350 y 400 de pendiente.
Cráter interno. Depresión que representa la última erupción explosiva que dejó vestigios en la forma de las pendientes y la abertura oriental del mismo. La profundidad varía entre 50 m y 200 m; dentro del mismo, los materiales se encuentran poco consolidados. Por descongelamiento y ocasionalmente precipitación, se alimentan dos sistemas de lagos que se encuentran divididos por un derrame brechado de dacita, conocido en el ámbito común como "ombligo". Dentro de la unidad se desarrolla un escarpe activo con desprendimiento de lajas de roca y una mesa volcánica.
4. Escarpe de colapso
Se localizan en las cabeceras de colapsos generados por erupciones laterales de carácter explosivo, asociadas con materiales de composición química ácida; presentan una forma alargada y una depresión prolongada en dirección del flujo de los piroclastos emitidos. El volcán muestra cuatro colapsos definidos de forma precisa; el más reciente y conservado de desarrolla desde el cráter hacia el Este (Figura 2).
5. Derrame brechado
Corresponde a la última manifestación fluida de la cámara magmática, que arrojó material que abarca una superficie menor a 500 m2. La forma del volcán indica condiciones de viscosidad a través de la pendiente del mismo; ésta rebasa los 370 en cada uno de los lados que posee.
6. Frentes lávicos cuaternarios
Corresponden a la masa frontal de flujos de lavas de composición andesítica, que por la forma, evidencian viscosidad intermedia y alta; motivo por el cual algunas de ellas pueden considerarse de tipo masivo.
7. Constitución de sistemas de laderas
Existen laderas con atributos de altitud, ángulo general de pendiente, geometría (cóncava, convexa, recta y mixta) y disección fluvial con grados de desarrollo disímiles. Todas ellas se relacionan con procesos de origen volcánico, asociados a derrames de composición intermedia y ácida; así como de algunos materiales piroclásticos. Por lo general, los perfiles transversales de los sistemas tienden a ser asimétricos, mientras que desde la perspectiva longitudinal se caracterizan por una morfología semicupuliforme alargada e interfluvios modelados por sistemas fluviales. Las laderas orientadas hacia el Norte, Sureste y Este presentan evidencias de modelado glaciar, así como de colapsos laterales del edificio.
8. Peniplanicies de tephra y sedimentos fluvio aluviales
Corresponden a superficies que presentan una superficie de modelado poco desarrollado, tanto en sentido positivo o negativo; en donde, la pendiente general no rebasa un promedio generalizado de 60°. Las nominadas tephra están constituidas por materiales piroclásticos mal clasificados y de orden heterométrico, en tanto que las de sedimentación fluvial obedecen a porciones pequeñas de territorio que se relacionan con sistemas de captación de corrientes fluviales autóctonas.
9. Morfología glaciar
Sepresentanevidenciasenel Nevado deToluca, el cual se caracteriza por contar con un relieve de exaración. Entre las formas más comunes que se desarrollaron se encuentran: valles glaciares con disección fluvial, originados por procesos de exaración, y que poseen formas en "U". Éstos se desarrollaron sobre antiguos valles fluviales y/o estructurales, los cuales a su vez, en el tiempo presente son retrabajados por la fuerza de los ríos; así como sistemas de depósitos conformados por morrenas, depósitos de debris y glaciares rocosos.
10. Morfología fluvial
El sistema de drenaje, de forma aparente, responde solo al patrón generalizado radial típico de estructuras circulares, en donde la circulación del agua tiende a ser centrífuga; sin embargo, el sistema local resulta complejo, debido a que responde a procesos de control estructural, herencia glacial, y dinámicas erosivo-acumulativas relacionadas con la litologia. Éste se puede clasificar en diferentes tipos de órdenes y configuraciones, entre ellas destacan la dendritica, la rectangular, la pinada y la asimétrica; sin embargo, por motivos de representación cartográfica se ha representado en un solo tipo de unidad (Figura 3).
La interpretación general de las geoformas del volcán San Antonio y Nevado Toluca posee una complejidad alta, debido a la historia evolutiva regional y local que involucra aspectos de orden tectónico, volcánico, períodos glaciares, cambios térmicos planetarios y de estabilidad morfoclimática. En este orden de ideas, se logran observar cinco áreas particulares que caracterizan a la geomorfologia de la zona de estudio (Figuras 4 y 5).
1. Elementos morfoestructurales: el patrón general de la estructura orográfica sigue las direcciones NNE-SSE, como régimen rector del sistema originado durante el Pleistoceno y la manifestación secundaria E-W del Cuaternario.
El relieve muestra configuraciones asociadas con dislocación de estructuras disyuntivas, procesos locales de basculamiento y transcurrencia, control estructural de valles fluviales y desmembramiento de algunas estructuras morfológicas secundarias.
2. Elementos volcánico y de depósito:
diferenciados a través de períodos eruptivos de orden y edad diferente, caracterizados con eventos efusivos y explosivos, que dejaron isopacas de potencia disímil, observados a través de columnas estratigráficas. Se distinguen colapsos laterales como testigos de la energía eruptiva en el caso de Nevado de Toluca.
3. Elementos paleoclimáticos y morfoclimáticos: observados en el macizo montañoso del Nevado a través de formas como valles y morrenas de diferente edad y granulometria, que indican variaciones en el régimen de temperatura y humedad.
4. Elementos litológicos: que definen por una parte las características de los procesos genéticos del relieve y por otra, la capacidad de resistencia a la erosión y transporte de sedimentos.
5. Elementos fluviales: observados a través de la variedad de configuraciones de la red de drenaje, que a pesar de la aparente homogeneidad, se desarrollan en patrones morfológicos y de distribución heterogénea; se reconocen procesos de "re-trabajo" sobre estructuras disyuntivas sepultadas por materiales volcanoclásticos y/o modeladas por valles glaciares y/o, sobre colapsos laterales. El sistema reconoce también procesos de socavación desigual de laderas y valles ( Tabla 2 ).
CONCLUSIONES
Con referencia a la construcción de la leyenda de la carta geomorfológica, la gestación de ésta se consideró a partir de una estructura sistémica que conserva además de las propiedades holísticas, el orden y jerarquía apropiada capaz de integrar elementos conformados a partir de la geoforma, el origen, el material constituyente y el carácter erosivo y/o acumulativo que se integra al nuevo mapa creado. Asila cartografía de orden morfológico y morfométrico generada para la confección del mapa final permite distinguir elementos de diferenciación genética, evolutiva, dinámica y de distribución espacial; así como de la influencia de la zonalidad generada por el cambio de elevación que se relaciona con la herencia de ambientes criogénicos de diferente magnitud y la formación de pisos altitudinales afectados por gradientes de temperatura y humedad. Se observa en la carta que si bien los edificios San Antonio y Nevado de Toluca comparten un origen similar, las diferencias de composición-edad, altitud, extensión y geometría han desarrollado procesos de equifandad y autopoiesis que generan paisajes variados con estados de uso y manejo que imprimen condiciones hemeróbicas de orden desigual. Se zonifican regiones para cada volcán, para el caso del San Antonio se distinguen dos unidades morfológicas con alta densidad de disección; sin embargo, el estado de conservación natural del paisaje es alta; toda vez que el Nevado presenta diferenciación por altitud y orientación en donde, la primera variable representa sistemas de laderas rectas relacionadas con influencia de procesos de exaración en la zona cumbral y; por debajo de ella sectores reconocidos en direcciones Norte, Noreste, Sur-Sureste y Oeste. La diferenciación territorial responde a los colapsos del edificio, la presencia de valles glaciares y a la intensidad de los procesos de disección fluvial, encontrándose mayor diversidad de geoformas en el sector SSE seguido del oriental. En este orden de ideas, el reconocimiento de la estructura geológica-estratigráfica que conforma a la zona de estudio pone en evidencia la forma en la cual el sustrato litológico condiciona la mecánica y direccionalidad de los procesos de modelado observados a través una complicada estructura fluvial conformada por más de dos centenas de cuencas con morfología y alometría disímil, condición que motiva a la generación de nuevas preguntas relacionadas con aspectos de calificación cualitativa y cuantitativa de levantamientos, hundimientos, movimientos horizontales, ciclos eruptivos, procesos de erosión, transporte y patrones de sedimentación en el tiempo presente. Entretanto, los contrastes generados entre la dinámica endógena, el sustrato geológico y la manifestación de la historia eruptiva del volcán observada a través del relieve y los depósitos que en él se encuentran, configuran condiciones que propician una geodiversidad compleja que se matiza por el desarrollo de procesos de modelado glaciar y fluvial. Se observa que los ritmos y procesos eruptivos generaron un estilo relacionado con ciclos de construcción-destrucción de diversos sectores del Nevado de Toluca en donde el control estructural ha configurado la morfología que se observa en el tiempo presente. Es así que los colapsos laterales del edificio han dado la pauta a la formación de paisajes naturales con una clara distinción morfológica entre sectores de laderas y valles que generan un mosaico de diversidad, toda vez que en el caso del volcán San Antonio la homogeneidad tiende a ser más común.