SciELO - Scientific Electronic Library Online

vol.95 número3Diversidad de musgos en el estado de Aguascalientes, México: Revisión y actualizaciónMolecular phylogeny and morphologic data of strains of the genus Coelastrella (Chlorophyta, Scenedesmaceae) from a tropical region in North America (Yucatan Peninsula) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.95 no.3 México jul./sep. 2017 

Taxonomy and Floristics

Phylogenetic position of Echeveria heterosepala (Crassulaceae): a rare species with diagnostic characters of Pachyphytum

Carlos Vázquez-Cotero1  3 

Victoria Sosa1  2  * 

Pablo Carrillo-Reyes3 

1 Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico

2 Laboratorio Nacional de Identificación y Caracterización Vegetal, Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan, Jalisco, Mexico

3 Herbario Luz María Villarreal de Puga (IBUG), Instituto de Botánica, Universidad de Guadalajara, Zapopan, Jalisco, Mexico



Echeveria and Pachyphytum are two closely related Neotropical genera in the Crassulaceae. Several species in Echeveria possess characters cited as diagnostic for Pachyphytum such as a clearly defined stem, a nectary scale on the inner face of petals and as inflorescence a scorpioid cyme or cincinnus. Pachyphytum has been identified as monophyletic while Echeveria as polyphyletic in previous molecular phylogenetic analysess.


The objective of this paper is to identify the phylogenetic position of a rare species with restricted distribution in Echeveria, E. heterosepala that possesses the diagnostic characters of Pachyphytum to better understand the generic limits between these two genera. We expect this species to be closely related to Pachyphytum.


Bayesian inference and Maximum Likelihood analyses were carried out using 47 taxa, including as ingroup, species of Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Sedum, Thompsonella and Villadia and as outgroup, species in Dudleya. Analyses were conducted based on plastid (rpl16, trnL-F) and nuclear (ETS, ITS) markers. Ancestral character reconstruction was carried out under a parsimony criterion based on the molecular trees retrieved by the phylogenetic analyses. Four morphological characters were considered: defined stem, type of inflorescence, nectary scale in petals and position of sepals.


Accessions of E. heterosepala were retrieved in a well-supported clade group comprising exclusively Echeveria species. Therefore this species belongs to Echeveria although possessing characters similar to Pachyphytum and moreover it was not identified closely related to this genus. None of the traits considered have taxonomic importance. The node at the Pachyphytum clade identified unambiguous character states such as stem present, straight sepals, nectary scale on petals, however these character states were identified in the rest of the clades as well. Remarkably, the monophyly of Pachyphytum was corroborated, while Echeveria remains poorly understood.

Keywords: Acre clade; Graptopetalum; Thompsonella



Echeveria y Pachyphytum son dos géneros Neotropicales cercanamente relacionados en Crassulaceae. Varias especies de Echeveria poseen caracteres citados como diagnósticos para Pachyphtum, tales como un tallo claramente definido, una escama nectarífera en la cara interna de los pétalos y una inflorescencia cimosa escorpioide, es decir un cincino. Filogenias moleculares previas han identificado a Pachytphytum como un grupo monofilético mientras que a Echeveria como polifilético.


El objetivo de este trabajo es el de identificar la posición filogenética de una especie rara de distribución restringida en Echeveria, E. heterosepala, la cual posee los caracteres diagnósticos de Pachyphytum para entender mejor los límites de estos dos géneros. Nuestra hipótesis es que debería resultar cercanamente relacionada a Pachyphytum.


Se llevaron a cabo análisis de inferencia Bayesiana y de Máxima Verosimilitud tomando en cuenta 47 taxa, incluyendo como grupo interno a especies de Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Sedum, Thompsonella y Villadia y como grupo externo a especies de Dudleya. Los análisis consideraron secuencias de ADN de cloroplasto (rpl16, trnL-F) y nuclear (ETS, ITS). También se llevó a cabo una reconstrucción de caracteres morfológicos ancestrales bajo el criterio de parsimonia tomando en cuenta los cladogramas de los análisis filogenéticos. Se codificaron cuatro caracteres morfológicos: tallo definido, tipo de inflorescencia, escala nectarífera en la cara interna de los pétalos y posición de los sépalos.


Las muestras de E. heterosepala se identificaron en un clado bien soportado que comprendía únicamente especies de Echeveria, por lo que esta especie debe formar parte de este género, aunque posea caracteres diagnósticos de Pachyphytum y más aún no resultó cercanamente relacionada a este género. Ninguno de los caracteres codificados tuvo importancia taxonómica. Aunque el nodo del clado de Pachyphytum se caracterizó por caracteres no ambiguos, tales como tallo presente, pétalos rectos y presencia de escama nectarífera en los pétalos, estos caracteres sin embargo variarion en el resto de los clados. Es notable que la monofilia de Pachyphytum fue corroborada por este estudio mientras que las relaciones de Echeveria continúan sin entenderse.

Palabras clave: clado Acre; Graptopetalum; Thompsonella

Echeveria DC. is a genus in the Crassulaceae comprising approximately 140 species distributed in the New World, from Texas to Argentina with the highest diversity in the mountainous areas of southern Mexico (Moran 1967, Walther 1935, 1972, Kimnach 2003). It was split from Cotyledon by De Candolle in 1828 by including all New World species that have a lateral inflorescence. Since then, Echeveria has undergone few changes. Oliveranthus Rose and Urbinia Rose were two taxa segregated at the beginning of the last century (Britton & Rose 1903), however these genera were not approved by taxonomists. Berger (1930) considered Thompsonella and Dudleya Britton & Rose to be part of Echeveria, yet both genera were reestablished later (Clausen 1940, Moran 1951). In the last 50 years, the circumscription of Echeveria has remained unchanged and is divided into 17 series based on morphological and chromosomal evidence (Walther 1972, Kimnach 2003, Pilbeam 2008).

Plants of Echeveria have leaves arranged in rosettes, with variable type of inflorescence (lateral spike, raceme, cyme, scorpioid cyme or cincinnus, thyrsoid). Flowers have mostly expanded succulent erect sepals, and bright colored succulent petals connate at the base (Kimnach 2003). The main traits used to recognize the 17 series are type of pubescence on the aerial stems, type of inflorescences and shape and length of the corolla (Walther 1972). However, most of the series are poly- or paraphyletic according to recent phylogenies, retrieved in clades embedded with species from Cremnophila Rose, Graptopetalum Rose, Sedum L. sect. Pachysedum H. Jacobsen, and Thompsonella Britton & Rose (Carrillo-Reyes et al. 2008, 2009).

Pachyphytum Link, Klotzsch & Otto is another genus in Crassulaceae mostly endemic to central Mexico comprising 19 described species, with a distribution centered on the Mexican Plateau, extending from southern Tamaulipas to northern Michoacán (von Poellnitz 1937, Moran 1963, 1989, 1991, García-Ruiz et al. 1999, Brachet et al. 2006, Martínez-Peralta et al. 2010). Most of the species in this genus have been described from a single locality (von Poellnitz 1937, Moran 1989, 1991, Brachet et al. 2006). Species grow in xerophytic scrub or less commonly in oak forest, and on vertical rock cliffs. Plants are characterized by a rock-dwelling habit, the leaves are terete, greenish or purple, sometimes conspicuously glaucous-farinose, the inflorescence is axillar, a scorpioid cyme or cincinnus, with somewhat imbricate succulent bracts. The flowers are pendant or rarely erect, pentamerous, succulent erect and appressed sepals sometimes surpassing the corolla, petals usually connate at the base, variously colored (white, greenish or reddish, or with maculae at the apex), with ten free stamens alternate or epipetalous and five nectaries. The fruits are erect to spreading and the seeds are ovoid and reticulate (von Poellnitz 1937, Uhl & Moran 1973, Thiede 2003, Thiede & Eggli 2007). Nevertheless, most authors coincide in recognizing scorpioid cymes or cincinnus, very succulent leaves and bracts and a nectary scale on the inner face of petals as the most important characters for distinguishing this genus (von Poellnitz 1937, Moran 1963, García-Ruiz et al. 1999, Brachet et al. 2006, Thiede & Eggli 2007). These similarities have led some authors to suggest that Pachyphytum might be included in Echeveria and be recognized as a section of the latter (Thiede 2003), however species of Pachyphytum have been retrieved in phylogenies in a well supported monophyletic group separate from Echeveria (Carrillo-Reyes et al. 2009).

One of the rarest species with restricted distribution in Echeveria possesses a nectary scale on the inner face of the corolla elements: E. heterosepala Rose (Figures 1, 2). It has been either considered in Pachyphytum or in Echeveria with a complex taxonomic history exemplifying the inadequate delimitation of these genera in Crassulaceae and the lack of diagnostic characters to distinguish genera. E. heterosepala was described by Rose (Bull. New York Bot. Gard. 3: 8. 1930) and later this species was considered to be the monotypic section Echeveriopsis of Pachyphytum (Walther 1931). This change was reverted by Moran (1960) who returned the species to Echeveria, creating the monotypic section Chloranthae in Echeveria, because E. heterosepala has more in common with Echeveria than with Pachyphytum. E. heterosepala is a rare species collected only in two areas of xerophytic scrub vegetation in the south of the Mexican Plateau, one of the populations in the surroundings of the Atexcac lake (Figure 1).

Figure 1 Distribution of Echeveria heterosepala, triangles indicate the localities where this species was collected. Inflorescence, flowers, rosette and habitat of Lake Atexcac, Puebla (19° 20’ 1’’ N, 97° 27’’ 0’’) where it was collected are shown. The mountain chain Trans-Mexican Volcanic Belt is shaded in green. Images taken by Pablo Carrillo at Atexcac, Puebla on March 26th, 2015. 

Figure 2 Echeveria heterosepala. A) Rosette and lateral branch. B) Branch with scorpioid cyme or cincinnus. C) D) Petal nectary scale taken from the inner face of petals. E) Flower with all elements. F) Flower with petals removed showing ovaries and stamens. G) Detail of base of three stamens. Illustration hand drawn by Edmundo Saavedra. 

Here we include Echeveria heterosepala in a molecular phylogeny to identify its position as well as to determine whether the nectary scale on the inner face of petals can be diagnostic for Pachyphytum. We include in analyses species of Echeveria, Graptopetalum Rose, Lenophyllum Rose, Pachyphytum, Thompsonella Britton & Rose and Villadia Rose that have been retrieved as closely related forming part of a clade known as the Acre Clade in the Crassulaceae (Carrillo-Reyes et al. 2009).

The objective of this paper is to identify the phylogenetic position of Echeveria heterosepala by means of molecular phylogenetic analyses and based on these results understand the evolution of the characters previously considered diagnostic for Echeveria and Pachyphytum.

Material and methods

Taxon sampling. We selected 47 taxa, representative species in the genera Echeveria (26 spp.), Graptopetalum (3 spp.), Lenophyllum (1 spp.), Pachyphytum (7 spp.), Thompsonella (2 spp.), Sedum (3 spp.) and Villadia (2 spp.) and based on previous phylogenetic analyses species in Dudleya (3 spp.) in the Leucosedum clade, were considered the outgroup (Carrillo-Reyes et al. 2008, 2009). Six Echeveria species with diagnostic characters attributed to Pachyphytum were included in the ingroup (E. novogaliciana, E. rulfiana, E. dactylifera, E. mucronata and E. crassicaulis) and E. heterosepala. Taxa, vouchers and GenBank accession numbers are listed in the Appendix 1.

DNA, extraction, amplification and sequencing. DNA was isolated using either a modified 2xCTAB method (Cota-Sánchez et al. 2006) or the DNeasy Plant MiniKit (Qiagen, Valencia, California) following the manufacturer’s instructions. Two plastid (rps16, trnL-F) and two nuclear regions (ETS, ITS) were sequenced. Amplification and sequencing primers for ETS were 18S-ETS (Baldwin & Markos 1998) and ETS-IGSF (Acevedo-Rosas et al. 2004); for ITS the primers were ITS4 and ITS5 (White et al. 1990); for rpS16, rpS16F and rpS16R (Shaw et al. 2005); and for trnL-F, trnL-c and trnL-f (Taberlet et al. 1991). PCR products were purified with QIAquick columns (Qiagen, Valencia, USA) or ExoSAP-IT (Affymetrix, Santa Clara, USA), sequenced with the TaqBigDye Terminator Cycle Sequencing kit (Perkin Elmer Applied Biosystems, Foster City, USA) and processed on a 310ABI DNA sequencer (Perkin Elmer Applied Biosystems, Foster City, USA). The sequences were edited in Sequencher 5.4.6 (Gene Codes) and aligned by MUSCLE (Edgar 2004) followed by manual refinement using BioEdit (Hall 1999).

Phylogenetic analyses. Phylogenetic analyses were conducted independently for three datasets, ETS+ITS (nuclear data matrix), trnL-F and rps16 (plastid data set), and for the combined data matrix. First, jModelTest 2.1.6 (Darriba et al. 2012) was used to identify the model of molecular evolution that best fit the three different matrices; the best models were GTR+G+I, GTR+G and GTR respectively under the Akaike Information Criterion (AIC). Maximum Likelihood (ML) phylogenetic analyses were conducted with RAxML v7.0.4 (Stamakakis 2014). Clade support was assessed with 1,000 replicates of a nonparametric bootstrap analysis, also conducted with RAxML. Bayesian analyses were run in MrBayes v.3.2.2 (Huelsenbeck & Ronquist 2001), for every run one cold and three heated chains were set to run for 40 million generations, sampling one tree every 2,000 generations. Stationarity was determined by the likelihood scores for time to convergence, and sample points collected prior to stationarity were eliminated (25 %). Posterior probabilities for clade support were determined by a 50 % majority-rule consensus of the trees retained after burn-in.

The trees retrieved by Bayesian inference based on the nuclear data, the most complete data matrix, were utilized to understand character evolution. Ancestral characters were inferred by the parsimony method, using the command trace character history and the unordered states assumption was selected for categorical characters using Mesquite v.2.75 (Maddison & Maddison 2017). This parsimony method finds the ancestral states that minimize the number of steps of character change given the tree and observed character distribution. The characters and character states analyzed were: 1) Sepals: straight/curved. 2) Stem: present/absent. 3) Petal nectary scale: present/absent. 4) Type of inflorescence: raceme/cyme/panicle/spike.


Analyses with plastid and combined (plastid + nuclear) DNA data matrices were performed with a reduced number of terminals, restricting them to taxa with complete sequences. The plastid data matrix included 25 taxa and 1,461 bp with 67 parsimony informative characters while the combined data matrix included 21 taxa with 2,536 bp and 362 parsimony informative characters. ML and Bayes inference with plastid data retrieved unresolved trees in which only the clade formed by the three species of Dudleya, the outgroup, received support (not shown). The combined data matrix retrieved a well supported clade formed by species of Pachyphytum (bootstrap bst = 100 % and posterior probabilities PP = 1), the two accessions of Echeveria heterosepala with complete sequences formed part of a well supported clade (bst = 93 %, PP = 0.99) comprising species of Echeveria and Sedum dendroideum (Figure 3).

Figure 3 Fifty percent majority rule consensus Bayesian tree based on combined data matrices (plastid rps16+ trnL-F and nuclear ETS+ITS). Percentage of bootstrap of Maximum Likelihood is indicated above branches and posterior probabilities of Bayesian inference is indicated below branches. Maximum likelihood analyses were performed in RAxML v7.0.4 (Stamatakis 2014) and Bayesian inference in MrBayes v.3.2.2 (Huelsenbeck & Ronquist 2001). 

The most complete was the nuclear data matrix including 47 taxa with 1,090 bp and 372 parsimony informative characters (Figure 4). ML and Bayesian analyses based on this data matrix retrieved species of Pachyphytum in a well supported Clade I (bst = 100, PP = 1). This clade was sister to a large clade with the rest of the ingroup species (bst = 78 %, PP = 0.97), which in turn were divided into two groups: one of them, Clade II comprised exclusively of Echeveria species (bst = 100 % PP =1) and the remaining taxa were retrieved in Clade III (bst = 69 %, PP = 0.99) with species of Echeveria forming part of groups with Thompsonella, Graptopetalum and Sedum. Lenophyllum acutifolium was the sister group to the rest of ingroup species. Thre three accessions of E. heterosepala formed part of a clade with Echeveria species such as E. mucronata, E. crassicaulis, E. nodulosa and E. racemosa (bst = 96 %, PP = 1) (Figure 4).

Figure 4 Fifty percent majority rule consensus Bayesian tree based on nuclear data matrix (ETS+ITS). Percentage of bootstrap of Maximum Likelihood is indicated above branches and posterior probabilities of Bayesian inference is indicated below branches. Maximum likelihood analyses were performed in RAxML v7.0.4 (Stamatakis 2014) and Bayesian inference in MrBayes v.3.2.2 (Huelsenbeck & Ronquist 2001). 

From the reconstruction of ancestral character states under parsimony, the clade formed by the species of Pachyphytum identified that unambiguous ancestral character states were: stem present, straight petals and petal scaly bract present (Figure 5). For the rest of clades the character states were reconstructed as ambiguous for the four selected traits (Figure 5).

Figure 5 Parsimony ancestral character reconstruction for the four selected characters, the trees utilized for reconstruction were retrieved by the nuclear data matrix. It was conducted in Mesquite v.2.75 (Maddison & Maddison 2015). 


Our study corroborated previous relationships identified by molecular phylogenies (Carrillo-Reyes et al. 2008, 2009): Pachyphytum was retrieved as a monophyletic group while species of Echeveria formed part of different clades with different genera. In this study we sequenced for the first time six species of Echeveria (E. heterosepala, E. novogaliciana, E. rulfiana, E. dactylifera, E. mucronata and E. crassicaulis) that have a nectary scale in petals, and based on previous sequences we selected seven species (E. halbingeri, E. colorata, E. tolimanensis, E. lutea, E. peacockii Baker, E. laui, E. purpusorum) with scorpioid cymes.

The only well supported clade formed exclusively by Echeveria species includes taxa of series Urbiniae: E. halbingeri, E. potosina, E. agavoides, E. colorata and E. tolimanensis, they share characters such as the lack of aerial stems and presence of urceolate flowers. Remarkably they do not share characters such like type of inflorescence. For example, E. tolimanensis, E. agavoides and E. colorata possess a cyme as inflorescence type while the rest of the species are characterized by a secund-racemose inflorescence.

The accessions of Echeveria heterosepala collected in Puebla, in Atexcac (Axc), Tenextepec (Txp) and Aljojuca (PCR) were retrieved in a well supported clade, closely related to species of Echeveria like E. mucronata, E. crassicaulis, E. nodulosa and E. racemosa. E. mucronata is an ornamental species with ample distribution from Arizona to Chiapas, E. crassicaulis grows along the Trans-Mexican Volcanic Belt, E. nodulosa from Puebla and Oaxaca while E. racemosa has been recorded in Puebla and Veracruz. E. racemosa is the type species of ser. Racemosae (Walther 1972).

Since Pachyphytum was described as a separate genus from Echeveria, the most relevant diagnostic morphological character has been the presence of a petal nectary scale. Even so, this scale has been observed on a number of species of Echeveria, such as E. heterosepala (Walther 1972) thus raising uncertainty about the utility of this character as diagnostic for differentiating these genera. Although a number of species in Echeveria classified in different series possess the petal nectary scale (i.e. the diagnostic character used for Pachyphytum), Moran (1960), argued that species in Pachyphytum have morphological similarities and should be recognized as a different genus. Our results suggest that neither the petal nectary scale nor the rest of the characters are exclusive to Pachyphytum and, with exception of a well supported clade of Echeveria that corresponded to series Urbiniae, the rest of the species in this genus are embedded in clades with species in Thompsonella, Sedum and Graptopetalum. Our phylogenetic analyses found that E. heterosepala forms part of a clade comprised entirely by species of Echeveria, and in consequence this species belongs to Echeveria, not to Pachyphytum.

Our reconstruction of ancestral characters indicates that the scale on petals has arisen independently four times, in the clades of Pachyphytum, Echeveria novogaliciana, E. heterosepala and E. crassicaulis. The rest of the characters were reconstructed arising multiple times as shown in Figure 5. Petal elaborations, like the nectary scale, have been associated to diverse floral biological functions in angiosperms, mostly related to attracting pollinators (Endress & Matthews 2006). Ontogeny of nectary scale has been recorded only in two genera in Crassulaceae. In Pachyphytum the nectary scale resulted of petals having a ventral lobe and the petal is fused with the stamen of the same radius (Leinfellner 1954), while in Sedum the nectary scale potentially corresponds to a staminode (De Craene & Smets 2001). Probably different origin of nectary scale in petals of the different taxa studied here is the explanation for finding this character arising multiple times, and in consequence it cannot have taxonomic significance. However this hypothesis has to be tested.

Polyploidy has been reported in both Echeveria and Pachyphytum as well as in Graptopetalum, Lenophyllum and Sedum (see Table 1 and references herein). The basic chromosome number in the Acre clade is 10 and in the Leucosedum clade is 7 (Mort et al. 2001). All studied taxa in the Acre clade are polyploids, as well as the outgroup Dudleya that belongs to the Leucosedum clade. Excepting species of Graptopetalum with the highest known number of chromosomes in Crassulaceae, Pachyphytum hookeri is remarkable having reports of 160 chromosomes and moreover the rest of studied species in this genus have high numbers of chromosomes as well (see Table 1 and references herein). Polyploidy has been associated with complex evolutionary processes. For instance, it has been described that diploid and tetraploid plant species could be genetically differentiated but morphologically similar (Stark et al. 2011). Furthermore, polyploidy has been recognized as a mechanism for sympatric speciation (Otto & Whitton 2000) and it has been identified as well that speciation events in angiosperms can be accompanied by ploidy increase (Wood et al. 2009). Future studies may show whether polyploidy is the result of rapid speciation without morphological changes in the case of Pachyphytum and Echeveria or whether other causes correlated or not to polyploidy such like population isolation by the mountains of the Mexican Trans-Volcanic Belt promoted rapid speciation.

Table 1 Species considered in analyses for which there are chromosome counts. 

Species Chromosome number Reference
Dudleya attenuata (S.Watson) Moran 17 Uhl & Moran 1953
D. pulverulenta Britton & Rose 17 Uhl & Moran 1953
D. viscida (S.Watson) Moran 34 Uhl & Moran 1953
Echeveria amoena De Smet ex É.Morren 33,66 Uhl 1982, 1992
E. coccinea (Cav.) DC. 23,25 Uhl 1963
E. colorata E.Walther 27 Uhl 1982
E. fulgens Lem. 27,162 Walther 1972
E. gibbiflora DC. 27,49, 51, 54 Funamoto & Yuasa 1989
E. grisea E.Walther 27 Uhl 1982
E. megacalyx E.Walther 20 Uhl 1992b
E. nodulosa (Baker) Ed.Otto 16 Uhl 1961
E. pringlei (S.Watson) Rose 23 Uhl 1992b
E. pulvinata Rose 23+2 Uhl 1992b
E. purpusorum A.Berger 27 Uhl 1982
E. racemosa Cham. & Schltdl. 18 Uhl 1982
Graptopetalum amethystinum E.Walther 34,35 Uhl 1970
G. macdougallii Alexander 64-66, 192, 244, 245 Uhl 1970
G. paraguayense (N.E.Br.) E.Walther 68 Uhl 1970
Lenophyllum acutifolium Rose 22,44 Uhl 1996
Pachyphytum glutinicaule Moran 33, 66, 99 Uhl & Moran, 1999
P. hookeri A.Berger 32, 64, ±128, ±160 Uhl 2001
P. kimnachii Moran ±33 Uhl & Moran, 1999
P. oviferum J.A. Purpus 33 Uhl & Moran, 1999
P. viride E.Walther 33 Uhl & Moran, 1999
Sedum corynephyllum Fröd. 34,68 Uhl 1978
S. oxypetalum Kunth. 29 Uhl 1980
Sedum L. 34 Uhl 1978

The lack of definition of generic limits in Echeveria has already been identified based on molecular phylogenies (Mort et al. 2001, Carrillo-Reyes et al. 2009). To understand its limits, additional sampling of Sedum from Europe and Asia should be considered, as species in this genus appear embedded in Echeveria clades and mainly New World species have only been sequenced. Until now the Echeveria species included in analyses are mostly from Mexico; further collections from Central and South American need to be added. For Pachyphytum approximately ten species require to be considered as well. Novel primers for plastid genomes have been designed as an effective and feasible strategy for phylogenomics in many groups of angiosperms (Yang et al. 2014). Broader phylogenetic analyses should consider these primers for sequencing plastid data (current plastid markers utilized show little variation) and a more ample sampling. These analyses will help to finally understand limits not only of Echeveria and Sedum but also of Pachyphytum, to determine whether they should be split in several genera or not.


Our samples were collected in the living collections of the botanical garden “Francisco Javier Clavijero” and in the field. We had access to the material under the terms of the scientific permit VER-FLO-228-09-09. We thank two anonymous reviewers, their comments improved this manuscript significantly. We are grateful to Ismael Guzmán-Valdivieso, Marilyn Vásquez and Diego Angulo for help in the field. We thank Arith Pérez and Cristina Bárcenas for help in the laboratory. We are grateful as well to Edmundo Saavedra who provided the illustration of Echeveria heterosepala and to Marilyn Vásquez her help in preparing the figures. This research was completed at the Instituto de Ecología A. C. (Sosa 20030/10296). C.V-C is grateful to CONACyT for an undergraduate scholarship (Sosa3649SNI).

Literature cited

Acevedo-Rosas R, Cameron K, Sosa V, Pell S. 2004. A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ITS, ETS, rpl 16 and trn L-F nucleotide sequences. American Journal of Botany 91: 109-1104. [ Links ]

Baldwin BG, Markos S. 1998. Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10: 44-463. DOI: 10.1006/mpev.1998.0545 [ Links ]

Berger A. 1930. Crassulaceae. In: A. Engler & Prantl K. Eds. Die Natürlichen Pflantzenfamilien. 352-483. Leipzig: K. Verlag. DOI: 10.5962/bhl.title.4635 [ Links ]

Brachet IC, Reyes-Santiago J, Mondragón-Larios R. 2006. Pachyphytum saltensis Brachet, Reyes & Mondragón, una nueva especie para el estado de Zacatecas. Cactáceas y Suculentas Mexicanas 51: 46-51. [ Links ]

Britton NL, Rose JN. 1903. New or noteworthy North American Crassulaceae. Bulletin of the New York Botanical Garden 3: 1-45. [ Links ]

Carrillo-Reyes P, Sosa V, Mort ME. 2008. Thompsonella and the “Echeveria group” (Crassulaceae), phylogenetic relationships based on molecular and morphological characters. Taxon 57: 863–874. [ Links ]

Carrillo-Reyes P, Sosa V, Mort ME. 2009. Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. Molecular Phylogenetics and Evolution 53: 267-276. DOI: 10.1016/ympev.2009.05.022 [ Links ]

Clausen RT. 1940. Studies in Crassulaceae: Villadia, Altamiranoa and Thompsonella. Bulletin of the Torrey Botanical Club 67: 195-198. [ Links ]

Cota-Sánchez JH, Remarchuk K, Ubayasena K. 2006. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter 24: 161-167. DOI: 10.1007/BF029114055 [ Links ]

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9: 772. DOI:10.1038/nmeth.2109 [ Links ]

De-Candolle AP. 1828. Prodromus Systematis Naturalis Regni Vegetabilis 3: 381-414. [ Links ]

De-Craene LP, Smets EF. 2001. Staminodes: their morphological and evolutionary significance. Botanical Review 67: 351-402. DOI:10.1007/BF02858099 [ Links ]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. DOI: 10.1093/nar/gkh340 [ Links ]

Endress PK, Matthews ML. 2006. Elaborate petals and staminodes in eudicots: diversity, function and evolution. Organisms Diversity and Evolution 6: 257-293. DOI:10.1016/j.ode.2005.09.005 [ Links ]

Funamoto T, Yuasa H. 1989. Chromosome studies of the genus Echeveria (Crassulaceae). Part II. Somatic chromosome numbers of the remaining taxa. Research Institute of Evolutionary Biology Science Repertory 6: 16-29. [ Links ]

García-Ruiz I, Glass C, Cházaro-Basáñez M. 1999. Pachyphytm machucae (Crassulaceae) una nueva especie de Michoacán, Mexico. Acta Botanica Mexicana 47: 9-14. [ Links ]

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. < > (accessed November 11, 2016) [ Links ]

Huelsenbeck JP, Ronquist F. 2001. MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. DOI: 10.1093/bioinformatics/17.8.754. [ Links ]

Kimnach M. 2003. Echeveria. In: U. Eggli ed. Illustrated Handbook of Succulent Plants, Crassulaceae, Berlin: Springer Verlag, 103–128. [ Links ]

Leinfellner W. 1954. Beiträge zur Kronblattmorphologie. III. Die Kronglätter der gattung Pachphytum. Österreichische Botanische Zeitschrift 101: 586-591. DOI: 10.1007/BF01284373 [ Links ]

Maddison WP, Maddison DR. 2017. Mesquite: a modular system for evolutionary analysis. Version 3.2. <> [ Links ]

Martínez-Peralta C, Mancilla R, Altamirano-Vázquez HG, Aguilar-Morales G. 2010. Características poblacionales de Pachycereus weberi y su relación con polinizadores en la comunidad Dominguillo en el Valle de Tehuacán-Cuicatlán, Puebla-Oaxaca. Cactáceas y Suculentas Mexicanas 55: 85-94. [ Links ]

Moran R. 1951. A revision of Dudleya. PhD Thesis. University of California, Berkeley. [ Links ]

Moran R. 1960. Echeveria heterosepala Rose. Cactáceas y Suculentas Mexicanas 5: 75-80. [ Links ]

Moran R. 1963. Pachyphytum brevifolium Rose and P. glutinicaule, a new species from Hidalgo, Mexico. Cactus and Succulent Journal 15: 35-41. [ Links ]

Moran R. 1967. Echeveria procera, a new species from Oaxaca, Mexico. Cactus and Succulent Journal 39: 182-185. [ Links ]

Moran R. 1989. Pachyphytum bracteosum Klotsch. Cactus and Succulent Journal 61: 119-124. [ Links ]

Moran R. 1991. Pachyphytum longifolium Rose. Cactus and Succulents Journal 63: 261-265. [ Links ]

Mort ME, Solits DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A. 2001. Phylogenetic relationships and evolution of the Crassulaceae inferred from matK sequence data. American Journal of Botany 88: 76-91. [ Links ]

Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401-437. DOI: 10.1146/annurev.genet.34.1.401 [ Links ]

Pilbeam J. 2008. The genus Echeveria. British Cactus and Succulent Society, London. [ Links ]

Sequencher v.5.4.6 DNA sequence analyisis software, Gene Codes Corporation, Ann Arbor, MI, USA. [ Links ]

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling E, Small RL. 2005. The tortoise and the hare II: relative utility of 21 non-coding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142-166. DOI: 10.3732/ajb.92.1.142 [ Links ]

Stamakakis A. 2014. RaxML Version 8: A tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics 9. DOI: 10.1093/bioinformatics/btu033 [ Links ]

Stark C, Michalski SG, Babik W, Winterfeld G, Durka W. 2011. Strong genetic differentiation between Gymnadenia conopsea and G. densiflora despite morphological similarity. Plant Systematics and Evolution 293: 213-226. DOI:10.1007/s00606-011-0439-x [ Links ]

Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. DOI: 10.1007/BF00037152 [ Links ]

Thiede J. 2003. Pachyphytum. In Eggli U. ed. Illustrated Handbook of Succulent Plants: Crassulaceae. Berlin: Springer. 190–195. DOI: 10.1007/978-3-642-55874-0 [ Links ]

Thiede J, Eggli U. 2007. Crassulaceae. In Kubitzki K. ed. The Families and Genera of Vascular Plants. Hamburg: Springer. 83-118. [ Links ]

Thiers B. 2017 [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. ]

Uhl CH. 1961. The Crassulaceae and cytotaxonomy. Cactus and Succulent Journal (US) 48: 225-229. [ Links ]

Uhl CH. 1963. Chromosomes and phylogeny of the Crassulaceae. Cactus and Succulent Journal 35: 3-7. [ Links ]

Uhl CH. 1970. The chromosomes of Graptopetalum and Thompsonella (Crassulaceae). American Journal of Botany 57: 1115-1121. [ Links ]

Uhl CH. 1978. Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80: 491- [ Links ]

Uhl CH. 1980. Chromosomes of Mexican Sedum III. Section Centripetalia, Fructicisedum and other woody species. Rhodora 82: 377-402. [ Links ]

Uhl CH. 1982. The problem of ploidy in Echeveria (Crassulaceae) I. Diploidy in E. ciliata. American Journal of Botany 69: 843-854. [ Links ]

Uhl CH. 1992. Polyploydy, and chromosome pairing in Echeveria and its hybrids. American Journal of Botany 79: 556–566. [ Links ]

Uhl CH. 1992b. Polyploidy, dysploidy, and chromosomes pairing in Echeveria (Crassulaceae) and its hybrids. American Journal of Botany 79: 556-566. [ Links ]

Uhl CH. 1996. Chromosomes and polyploidy in Lenophyllum (Crassulaceae). American Journal of Botany 83: 216-220. [ Links ]

Uhl CH. 2001. Hybrids of Pachyphytum hookeri (Crassulaceae) and their chromosomes. Haseltonia 8: 63-84. [ Links ]

Uhl CH, Moran R. 1953. The cytotaxonomy of Dudleya and Hasseanthus. American Journal of Botany 40: 492-502. [ Links ]

Uhl CH, Moran R. 1973. The chromosomes of Pachyphytum (Crassulaceae). American Journal of Botany 60: 648-656. [ Links ]

Uhl CH, Moran R. 1999. Chromosomes of Villadia and Altamiranoa (Crassulaceae). American Journal of Botany 86: 387-397. [ Links ]

von-Poellnitz K. 1937. The genus Pachyphytum. The Cactus and Journal 5: 72-75. [ Links ]

Walther E. 1931. Genus Pachyphytum. Cactus and Succulent Journal 3: 9-13. [ Links ]

Walther E. 1935. Notes on the genus Echeveria. Cactus and Succulent Journal 7: 69-72. [ Links ]

Walther E. 1972. Echeveria. California Academy of Sciences. San Francisco, California. [ Links ]

White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR Protocols. San Diego, California: Academic Press. 315-322. [ Links ]

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences 106: 13875-13879. DOI: 10.1073/pnas.0811575106 [ Links ]

Yang JB, Li DZ, Li HT. 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Molecular Ecology Resources 14: 1024-1031. DOI: 10.1111/1755-0998.1251 [ Links ]

Appendix 1

Taxa included in the analyses, voucher information, locality and GenBank accession numbers for ITS, ETS, rps16 and trnL-F. Sequences not obtained are designated by —; * indicates sequence previously deposited in GenBank; HBG= accession from the Huntington Botanical Garden; herbarium acronyms follow Thiers (2016).

Taxon, Voucher, Mexico, GenBank accessions: ITS, ETS, rpS16, trnL-F

IngroupEcheveria agavoides Lem. Mexico, Zacatecas, Pinos. L.F. Colín-Nolasco 848 (IBUG), MF818300, MF818281, MF818237, MF818258; Echeveria amoena De Smet ex E. Morren, *EF632172, *EF632151, *EF632189, —; Echeveria coccinea (Cav.) DC., *AY545682, *AY540512, — , —; Echeveria colorata E. Walther, *AY545683, *AY540513, —, —; Echeveria crassicaulis E. Walther, Mexico; D. Jimeno-Sevilla 1359 (XAL), MF818302, MF818281, MF818249, MF818259; Echeveria dactylifera E. Walther, Mexico, Durango, El Salto; J.A. Pérez de la Rosa s.n. (IBUG), Mexico, MF818303, MF818283, MF818250, MF818260; Echeveria fulgens Lem., *AY545684, *AY540514, —, *AY540553; Echeveria gibbiflora DC., *AY545685, *AY540515, —, *AY540554; Echeveria grisea E. Walther, P. Carrillo-Reyes, s.n. (IBUG), MF818304, *EF632153, MF818246, MF818261; Echeveria halbingeri E. Walther, Mexico, D. Jimeno-Sevilla 268 (XAL), MF818305, MF818284, MF818238, MF818262; Echeveria heterosepala Rose ex Britton & Rose, Mexico, Puebla, Atexcac, Guadalupe Victoria; Vázquez-Cotero 1 (XAL), MF818306, MF818285, MF818244, MF818263; Puebla, Tenextepec; Vázquez-Cotero 2 (XAL), MF818307, MF818286, MF818245, MF818264; Mexico, Puebla, Aljojuca, P. Carrillo-Reyes 8136 (IBUG), MF818308, MF818287, MF818248 , MF818265; Echeveria lauii Moran & J.Meyrán, cultivated, MF818309, MF818288, MF818239, MF818266; Echeveria leucotricha J.A.Purpus, Mexico, Puebla, Caltepec, D. Cabrera-Toledo & F. Nicolalde 6 (IBUG), MF818310, MF818289, MF818240, MF818267; Echeveria lutea Rose, Mexico, San Luis Potosi, Villa Hidalgo, E. Ruiz-Sánchez 90 (IBUG) MF818311, MF818290, MF818241, MF818268; Echeveria megacalyx E. Walther, *FJ753916, *EF632154, — , —; Echeveria mucronata Schltdl., Mexico, Querétaro, Querétaro, A. Rodríguez et al. 6799 (IBUG) MF818312, MF818298, MF818251, MF818269; Echeveria nodulosa Otto, *EF632173, EF632156, EF632190, —; Echeveria novogaliciana J.Reyes, Brachet & O.González, Mexico, Jalisco, Zapopan, D. Jimeno-Sevilla s.n. (XAL), MF818313, MF818291, MF818252, MF818270; Echeveria peacockii Baker, Mexico, Puebla, Caltepec, A. Rodríguez & C. Briseño-Avena 3905 (IBUG); MF818314, MF818292, MF818242, MF818271; Echeveria pringlei (S. Watson) Rose, *AY545687, *AY 540517, —, *AY540555; Echeveria potosina E. Walther, Mexico, Jalisco, Guadalajara, P. Carrillo-Reyes & M. Harker 206 (IBUG), MF818315, MF818293, —, —; Echeveria pulvinata Rose, *AY54568, *AY540518, —, —; Echeveria purpusorum A. Berger, P. Carrillo-Reyes & D. Cabrera-Toledo 4472 (XAL), *FJ753919, FJ753872, MF818243, MF818272; Echeveria racemosa Cham. & Schldtl., *FJ753920, *EF632157, —, —; Echeveria rulfiana Jimeno-Sevilla, Santana Mich & P. Carrillo, Mexico, Jalisco, San Gabriel, P. Carrillo-Reyes & J.M. Carrillo 6336 (IBUG), Mexico, MF818316, MF818294, MF818253, MF818273; Echeveria schaffneri Rose, Mexico, Zacatecas, Concepción del Oro, J.A. Pérez de la Rosa 2091 (IBUG), MF818301, MF818295, MF818247, MF818274; Echeveria tolimanensis Matuda, Mexico, Hidalgo, Pacula, A. Castro-Castro 641-A (IBUG) MF818317, MF818296, —, —; Graptopetalum amethystinum E. Walther, *AY545690, *AY40519, —, *AY540556; Graptopetalum macdougalli Alexander, *AY545698, *AY40527, —, *AY540564; Graptopetalum paraguayense (N.E. Brown) E. Walther, *AY545792, *AY540531, —, *AY540568; Pachyphytum fittkaui Moran, *FJ753925, —, —, —; Pachyphytum glutinicaule Moran, *AY5456710, *AY40539, —, —; Pachyphytum hookeri (Salm-Dyck) A. Berger, *FJ753926, —, —, —; Pachyphytum kimnachii Moran, *FJ753927, —, —, —; Pachyphytum machucae I.García, Glass & Cházaro, Mexico, Michoacán, Pajacuarán, I. García-Ruiz 4497 (IEB) MF818318, MF818297, MF818254, MF818275; Pachyphytum oviferum J.A. Purpus, HBG-48603, Mexico, FJ753928, MF818299, MF818255, MF818276; Pachyphytum viride E. Walther, *AY545711, *AY540540, MF818256, MF818277; Sedum pachyphyllum Rose, *FJ753960, *FJ753893, — , —; Sedum corynephyllum Rose, *AY5456715, *AY40544, —, —; Thompsonella mixtecana J. Reyes & L. López, *EF632180,* EF632162, *EF632196, MF818278; Thompsonella xochipalensis M. Gual Diaz, S.Peralta & Pérez-Calix, *EF632184, *EF632166, *EF632199, MF818279.

OutgroupDudleya candelabrum Rose ex Britton & Rose, *JX960502, *JX960466, —, *JX960544; Lenophyllum acutifolium Rose, *AY5459709, *AY40538, —, —; Sedum oxypetalum Kunth, *FJ753958, *FJ753891, *FJ753856, —; Villadia batesii (Hemsl.) Baehni & J.F.Macbr., *EF63218, *EF632168, MF818257, MF818280; Villadia imbricata Rose, *EF632187, *EF632170, *EF632203, —.

Received: December 09, 2016; Accepted: March 29, 2017

* Corresponding author: Victoria Sosa, e-mail:

Author Contributions. Carlos Vázquez-Cotero, Pablo Carrillo-Reyes and Victoria Sosa collected samples, obtained the DNA sequences, performed analyses and wrote the paper.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License