SciELO - Scientific Electronic Library Online

vol.24 número3Selección de ancho de banda para la estimación de densidad kernel de incendios forestalesCarga de combustibles leñosos en humedales costeros de la Reserva de la Biosfera La Encrucijada, Chiapas, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.24 no.3 Chapingo sep./dic. 2018  Epub 19-Feb-2021 

Scientific note

Potentially toxic minerals in environmental liabilities in Noria de Ángeles, Zacatecas

Carolina Cerón-Rivera1 

Juan F. Martínez-Montoya1  * 

Genaro Olmos-Oropeza1 

Jorge Palacio-Núñez1 

Guillermo Espinosa-Reyes2 

1Colegio de Postgraduados, Campus San Luis Potosí, Postgrado en Innovación en Manejo de Recursos Naturales. Iturbide 73. C. P. 78622. Salinas de Hidalgo, San Luis Potosí, México.

2Universidad Autónoma de San Luis Potosí, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Facultad de Medicina. Av. Sierra Leona núm. 550, col. Lomas 2.a sección. C. P. 78210. San Luis Potosí, México.



Sites polluted by mining activity represent a risk to human health.


To determine the concentration of toxic minerals (Hg, Pb, Cd and As) in two environmental liabilities (ELs) in Noria de Ángeles, Zacatecas.

Materials and methods:

Soil samples from two ELs and a reference site were taken based on NMX-AA-132-SCFI-2006; in addition, a spring and waterbodies adjacent to or on the ELs were sampled, in accordance with NOM-230-SSA1-2002. Toxic elements in soil and water were analyzed in accordance with NOM-147-SEMARNAT/SSA1-2004 and NOM-127-SSA1-1994, respectively. The concentrations of elements in the soil were subjected to an analysis of variance and Tukey’s range test (P < 0.05).

Results and discussion:

The Hg concentration was higher (P < 0.05) in the ELs than in the reference site, but it did not exceed the maximum permissible limits (MPL) established by the standards. The Cd and As in the soil of the ELs and reference site exceeded the MPL, and the Pb only in the ELs. It is deduced that the As has a mainly geological origin, since its content in the reference site was higher than the recent EL. In the waterbodies, the Pb, Hg, Cd and As concentrations were much higher than the MPL.


The Pb, Cd and As in the ELs, and the Pb, Cd, Hg and As in the waterbodies pose a risk to the health of the residents of Noria de Ángeles, Zacatecas.

Keywords: Cadmium; mercury; lead; arsenic; polluting elements; mining activity



Los sitios contaminados a causa de la actividad minera representan un riesgo para la salud humana.


Determinar la concentración de minerales tóxicos (Hg, Pb, Cd y As) en dos pasivos ambientales (PA) en Noria de Ángeles, Zacatecas.

Materiales y métodos:

Se tomaron muestras de suelo de dos PA y de un sitio de referencia con base en la NMX-AA-132-SCFI-2006; además, se muestrearon un manantial y cuerpos de agua adyacentes o sobre los PA, conforme a la NOM-230-SSA1-2002. Los elementos tóxicos en el suelo y agua se analizaron de acuerdo con la NOM-147-SEMARNAT/SSA1-2004 y NOM-127-SSA1-1994, respectivamente. Las concentraciones de elementos en el suelo se sometieron a análisis de varianza y comparación de medias Tukey (P < 0.05).

Resultados y discusión:

La concentración de Hg fue mayor (P < 0.05) en los PA respecto al sitio de referencia, pero no rebasó los límites máximos permisibles (LMP) establecidos por las normas. El Cd y As en el suelo de los PA y sitio de referencia rebasaron el LMP, y el Pb solo en los PA. Se deduce que el As tiene origen geológico principalmente, ya que su contenido en el sitio de referencia fue superior al PA reciente. En los cuerpos de agua, las concentraciones de Pb, Hg, Cd y As fueron muy superiores a los LMP.


El Pb, Cd y As en los PA, y el Pb, Cd, Hg y As en los cuerpos de agua representan un riesgo para la salud de la población de Noria de Ángeles, Zacatecas.

Palabras clave: Cadmio; mercurio; plomo; arsénico; elementos contaminantes; actividad minera


Mexico has a wealth of metallic and non-metallic minerals throughout its territory (Dirección General de Minas, 2015). This has caused problems arising from mineral extraction and the processes of mining activity, reflected mainly in the northern area where the soils are more polluted (Mendez & Maier, 2008). In the state of Zacatecas, located in the northern center of the country, mining activity began in the sixteenth century, which has generated large amounts of waste deposits known as environmental liabilities (ELs). The problem of this activity is the historically accepted practice of abandoning mines and ELs when the minerals of interest are exhausted (Himley, 2014; Unger, Lechner, Kenway, Glenn, & Walton, 2015); in 2013, there were 3 241 abandoned ELs in Mexico (Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2014). These ELs are a source of heavy metals, which are dispersed by the wind and water (Adriano, 2001; Navarro et al., 2008), since they are associated with clays migrating as composite particles in the sediments (Balderas-Plata, Gutiérrez-Castorena, Carrillo-González, Ortiz-Solorio, & Lugo-de la Fuente, 2006), thus increasing the risk of pollution. The presence of metals in the soil and waterbodies increases the chronic health risks of living organisms, including humans (García-Rico et al., 2016; McSwane, French, & Klein, 2015).

The Real de Ángeles mine, located in Noria de Ángeles, Zacatecas, is constituted by alternating sandstones, siltstones and argillites (Servicio Geológico Mexicano [SGM], 2016). The risk of pollution depends on the associated rock and the host rock of the deposit. The main minerals in the mine are: argentite (Ag2S), sphalerite (ZnS), chalcopyrite (CuFeS2), arsenopyrite (FeAsS), pyrrhotite (Fe1-XS), argentiferous galena (PbS·Ag), freibergite (3Cu2Ag·S·Sb2S3), tetrahedrite (Cu3SbS4-3), anglesite (PbSO4) and cerussite (PbCO3) (Bravo-Nieto, 1988). The above shows the possible presence, perhaps at pollutant levels, of lead, zinc, arsenic, silver, iron, strontium and antimony in ELs; the presence of these heavy metals in soil, dust and water could put public and environmental health at risk (Balderas-Plata et al., 2006; García-Rico et al., 2016; McSwane et al., 2015). In this context, the objective of this research was to determine the concentration of potentially toxic minerals (Hg, Pb, Cd and As) in two environmental liabilities and in waterbodies that are adjacent to or on these liabilities in Noria de Ángeles, Zacatecas.

Materials and methods

The study was conducted in Noria de Ángeles, located in the southeast of the state of Zacatecas, where there are two ELs (Figure 1). The first (historical) dates from the colonial era (Arellano, 1970), covers an area of approximately 2 ha, has no protection and is within the urban area; adjacent to this EL is a spring that forms a stream, with the water used by domestic livestock. The second EL (recent) began its activities in 1982 and corresponds to the Real de Ángeles mine. This EL covers a 360-ha area and has an approximately 30-m-thick protective layer; however, it has areas without protection and with outcrops due to water erosion. In this EL there are waterbodies adjacent to and above it that are used as drinking troughs for domestic livestock. The climate is semi-dry temperate (BS1kw) with summer rains; according to weather station data for Villa González Ortega, Zacatecas, the average annual temperature is 13.7 °C, average annual rainfall is 342.6 mm and potential evapotranspiration is 2 023.4 mm (Comisión Nacional del Agua [CONAGUA], 2017).

Figure 1 Location of environmental liabilities and waterbodies sampled in Zacatecas. UTM and Datum WGS84 projection. Source: Instituto Nacional de Estadística y Geografía (INEGI, 2015). 

The ELs were sampled in August 2015, following the specifications of Mexican Standard NMX-AA-132-SCFI-2006 (Secretaría de Economía [SE], 2006). A reference site (22.56497° NL - 101.653022° WL) located in Salinas, San Luis Potosí, was also sampled. In the historic EL and reference site, three, 50-m transects were located; every 10 m a sample was taken at a depth of 0 to 20 cm. The direction of each transect was chosen based on the last three digits of 200 MXN banknotes, which were considered as degrees. The recent EL is "protected" with a 40-cm layer of uncontaminated material; however, it has outcrops due to water erosion or areas that were not properly protected. Therefore, sampling was carried out in 15 of these outcrops. In each one a 1-m2 square was established where gravel, vegetation and mulch were removed; the corners and the center were sampled, with which a composite sample was obtained (SE, 2006).

In June 2016, three water samples were taken from a spring adjacent to the historic EL (1), and from three waterbodies located above (2) or adjacent (3 and 4) to the recent EL (Figure 1), according to NOM-230-SSA1-2002 (Secretaría de Salubridad y Asistencia [SSA], 2003) and NOM-147-SEMARNAT/SSA1-2004 (SEMARNAT, 2007). Samples were placed in sterile disposable bottles, 1 mL of concentrated nitric acid was added per 100 mL of sample and they were kept at 4 °C until analysis.

The EL and reference site soil samples were analyzed for lead, mercury, cadmium and arsenic, in accordance with NOM-021-SEMARNAT-2000 (SEMARNAT, 2002). The presence of these metals and metalloid in the water was determined in accordance with NOM-127-SSA1-1994 (SSA, 2000), using atomic absorption equipment (Aurora Instruments Model AI-1200).

Metal and metalloid concentrations in the historical and recent ELs and in the reference site were subjected to an analysis of variance in a completely randomized design using the PROC GLM of SAS (Statistical Analysis Software Inc. [SAS], 2015) and Tukey’s range test (Steel & Torrie, 1980). The minimum, maximum and average values ​​of metals and metalloid in the samples were obtained for each waterbody.

Results and discussion

Table 1 contains the average values of the metals in the ELs of Noria de Ángeles, Zacatecas, as well as the permissible limits established by NOM 147 SEMARNAT/SSA1-2004 (SEMARNAT, 2004) and the USEPA (United States Environmental Protection Agency, 2017). This table shows that the Hg concentration was higher (P < 0.05) in the ELs than in the reference site, but it did not exceed the maximum permissible limits established by the standards.

Table 1 Concentrations of metals and metalloid in the historical environmental liability (HEL) and recent environmental liability (REL) in Noria de Ángeles, Zacatecas, and in the reference site (RS) in Salinas, San Luis Potosí. The maximum permissible limits correspond to those established by NOM 147 SEMARNAT/SSA1-2004 (SEMARNAT, 2004) and USEPA (2017)

Metal or metalloid Site Maximum (mg·kg-1) Mean (mg·kg-1) NOM (mg·kg-1) USEPA (mg·kg-1)
Hg HEL 5.54 4.15 a 23 8
REL 5.38 3.23 a
RS 3.40 1.11 b
Cd HEL 66.78 23.88 b 37 20
REL 257.20 202.65 a
RS 39.96 19.10 b
As HEL 462.00 263.34 a 22 ---
REL 188.40 47.90 b
RS 151.40 93.21 b
Pb HEL 480.80 248.80 a 400 150
REL 394.40 149.67 a
RS 4.28 2.81 b

Means with a different letter for each element, in the same column, are statistically different according to Tukey’s range test (P < 0.05).

With respect to Cd, the maximum concentrations in the three sites exceeded the limits of the aforementioned standards; however, the average value was only higher in the recent EL, being statistically higher (P < 0.05) than that of the other sites.

On the other hand, the maximum and average As values in the three sites were higher than the maximum permissible limits established in the two standards. It should be noted that although the As concentration in the reference site was lower than in the EL, the value was almost five times higher than the maximum allowable, which indicates a source of contamination of surface waterbodies, soil, and forage that domestic livestock consume and, therefore, represent a risk to the health of animals and the human population (Kyunghee et al., 2013). The historical EL had the highest As concentration (P < 0.05).

The maximum and average Pb values in the historical EL exceeded the maximum permissible limits of both standards; in the recent EL, the values exceeded only the limits established by the USEPA (2017). The high Pb concentrations are related to the argentiferous galena (PbS·Ag), anglesite (PbSO4) and cerussite (PbCO3) minerals present in a deposit (Bravo-Nieto, 1988). With respect to the reference site, the Pb concentration was found to be well below the permissible limits. The Pb and As values were lower than those found by Navarro et al. (2008) in abandoned mine deposits.

According to the results, the Pb, Hg and Cd pollutants of the ELs are mainly of anthropogenic origin since the concentrations were higher than in the reference site. On the contrary, it is deduced that the As has anthropogenic and geological origins, since its content in the reference site was higher than in the recent EL, but less than in the historical one. Both ELs constitute a threat to public health and wildlife, through the ingestion of dust with a high content of heavy metals, mainly As, Cd and Pb (García-Rico et al., 2016; Jeong-Hun & Kyoung-Kyoon, 2013) since these are near (recent EL with poor protection) or within (historical EL without protection) urban areas.

Table 2 shows the Pb, Cd, Hg and As concentrations in the waterbodies. The concentrations of these elements exceeded, in all cases, the maximum permissible values established by the Ministry of Health (SSA, 2003) and USEPA (2009). The Cd, Pb and As values found in this study are higher than those found by Steller, Domínguez-Mariani, Garrido, and Avilés (2015) in water samples taken from abandoned minefields in Huautla, Morelos, where the concentrations do not exceed 1.0 mg·L-1. By contrast, in water sources of other abandoned mines, Elyaziji, Khalil, Hakkou, Benzaazoua, and Alansari (2016) and Oyarzún, Maturana, Paulo, and Pasieczna (2003) found values similar or much higher than those found in the present work. Water contaminated by metals is common in abandoned mining areas, due to the weathering of minerals (Elyaziji et al., 2016; Steller et al., 2015).

Table 2 Concentrations of metals and metalloid in the waterbodies present in the historical environmental liability (CA1) and recent environmental liabilities (CA2, CA3 and CA4) of Noria de los Angeles, Zacatecas. The maximum permissible limits (MPL) correspond to those established by NOM-127-SSA1-1994 (SSA, 2000) and USEPA (2009)

Waterbody Value Hg (mg·L-1) Cd (mg·L-1) As (mg·L-1) Pb (mg·L-1)
CA1 Min 101.2 154.4 ND 0.20
Max 104.8 164.4 55.6 0.40
Ave 103.0 159.4 27.8 0.30
CA2 Min 73.6 17.2 140.8 0.30
Max 75.2 34.0 148.8 0.40
Ave 74.4 25.6 144.8 0.36
CA3 Min 76.8 40.8 102.4 0.20
Max 86.4 48.4 138.8 0.40
Ave 81.6 44.6 120.6 0.28
CA4 Min 82.4 47.6 40.4 0.04
Max 84.0 54.8 76.4 0.28
Ave 83.2 51.2 58.4 0.16
MPL NOM 0.001 0.005 0.05 0.001
MPL USEPA 0.002 0.005 0.01 - 0.05 0.01

ND: Not detected because it is present in a concentration lower than the sensitivity of the atomic absorption equipment used in the quantification.

The waterbodies in the Noria de Angeles’ ELs pose a major risk to domestic livestock and wildlife that consume water directly from these places. In addition, the toxic elements could be bioaccumulating in products such as meat and milk and thus pose a threat to the health of local people who consume these products (Nava-Ruíz & Méndez-Armenta, 2011; Nouri & Haddioui, 2015).


The concentrations of Pb, Cd and As of the environmental liabilities (ELs) and the concentrations of Pb, Cd, Hg and As in the waterbodies exceed the permissible limits established in national and international standards. Therefore, the ELs and waterbodies pose a risk to the health of the local population, wildlife and domestic animals, mainly due to dust inhalation and contaminated water ingestion.


The authors thank the National Science and Technology Council for the scholarship granted to the first author to carry out her Master of Science studies, and the Microrregión de Atención Prioritaria Salinas, Campus San Luis Potosí, Colegio de Postgraduados for the financial support provided for field work.


Adriano, D. C. (2001). Trace elements in terrestrial environmental biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York, USA: Springer Verlag. [ Links ]

Arellano, G.(1970). Cubica y muestreo de los jales de Noria de Ángeles, Zacatecas, ubicados dentro del terreno urbano denominado “La Hacienda Grande”, propiedad del Sr. E. W. Bergmann. Zacatecas, México: Consejo de Recursos Naturales no Renovables. [ Links ]

Balderas-Plata, M. A., Gutiérrez-Castorena, M. C., Carrillo-González, R., Ortiz-Solorio, C. A., & Lugo-de la Fuente, J. A. (2006). Distribución de elementos traza en los suelos de las microcuencas en Texcoco. Terra Latinoamericana, 24(4), 451-461. Retrieved from ]

Bravo-Nieto, J. (1988). Geología del yacimiento Real de Ángeles, municipio de Noria de Ángeles, Zacatecas. En G. P. Salas (Ed.), Geología Económica de México (pp. 505-514). México: Fondo de Cultura Económica. [ Links ]

Comisión Nacional del Agua (CONAGUA). (2017). Estaciones meteorológicas automáticas. Retrieved August 20, 2017, from Retrieved August 20, 2017, from ]

Dirección General de Minas. (2015). Estadísticas 2015. Retrieved June 17, 2016 from Retrieved June 17, 2016 from ]

Elyaziji, A., Khalil, A., Hakkou, R., Benzaazoua, M., & Alansari, A. (2016). Assessment of trace elements in soils and mine water surrounding a closed manganese mine (Anti Atlas, Morocco). Mine Water and the Environment, 35(4), 486-496. doi: 10.1007/s10230-016-0397-1 [ Links ]

García-Rico, L., Meza-Figueroa, D., Gandolfi, J. A., Ríos-Salas, R. D., Romero, M. F., & Meza-Montenegro, M. M. (2016). Dust-metal source in an urbanized arid zone: Implications for health-risk assessments. Archives of Environmental Contamination and Toxicology, 70(3), 522-533. doi: 10.1007/s00244-015-0229-5 [ Links ]

Himley, M. (2014). Mining history: Mobilizing the past in struggles over mineral extraction in Peru. Geographical Review, 104(2), 174-191. doi: 10.1111/j.1931-0846.2014.12016.x [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI). (2015). Ortofoto F14A71a escala 1:20000. México: Autor. [ Links ]

Jeong-Hun, P., & Kyoung-Kyoon, C. (2013). Risk assessment of soil, water and crops in abandoned Geumryeong mine in South Korea. Journal of Geochemical Exploration,128, 17-123. doi: 10.1016/j.gexplo.2013.02.004 [ Links ]

Kyunghee, J., Jungkon, K., Minjung, L., Soyoung, P., Ho-Jang, K., Hae-Kwan, C., …Kyungho,C. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, 178, 322-328. doi: 10.1016/j.envpol.2013.03.031 [ Links ]

McSwane, D., French, J., & Klein, R. (2015). Environmental health and safety. In B. Bradsher, G. Wojtala, C. Kaml, C. Weiss, & D. Read (Eds.), Regulatory foundations for the food protection professional (pp. 125-141). USA: Springer. [ Links ]

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semi-arid environments - An emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283. doi: 10.1289/ehp.10608 [ Links ]

Nava-Ruíz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Archivos de Neurociencias, 16(3), 140-147. Retrieved from ]

Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M., Vidal, J., Tovar, P. J., & Bechb, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3), 183-193. doi: 10.1016/j.gexplo.2007.04.011 [ Links ]

Nouri, M., & Haddioui, A. (2015). Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environmental Monitoring and Assessment, 188(1), 6. doi: 10.1007/s10661-015-5012-6 [ Links ]

Oyarzún, J., Maturana, H., Paulo, A., & Pasieczna, A. (2003). Heavy metals in stream sediments from the Coquimbo region (Chile): Effects of sustained mining and natural processes in a semi-arid Andean Basin. Mine Water and the Environment, 22(3), 155-161. Retrieved from ]

Secretaría de Economía (SE). (2006). Norma Mexicana NMX-AA-132-SCFI-2006, Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra. México: Diario Oficial de la Federación. Retrieved from Links ]

Secretaría de Salud y Asistencia (SSA). (2000). Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México: Diario Oficial de la Federación. Retrieved from ]

Secretaría de Salud y Asistencia (SSA). (2003). Norma Oficial Mexicana NOM-230-SSA1-2002. Salud Ambiental. Agua para uso y consumo humano. Requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo. México: Diario Oficial de la Federación. Retrieved from ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación. Retrieved from ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2007). Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. México: Diario Oficial de la Federación (Segunda Sección). Retrieved from ]

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2014). El medio ambiente en México. Residuos peligrosos y sitios contaminados. Retrieved from ]

Servicio Geológico Mexicano (SGM). (2016). Panorama minero del estado de Zacatecas. Retrieved from ]

Statistical Analysis Software Inc. (SAS). (2015). SAS® 9.4 In-database products: User’s guide (6th ed.). Cary, NC, USA: Author. Retrieved from ]

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics. A biometrical approach (2nd ed.). USA: McGraw-Hill. [ Links ]

Steller, M. V., Domínguez-Mariani, E., Garrido, S. E., & Avilés, M. (2015). Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico. Environmental Earth Science, 74(4), 2893-2906. doi: 10.1007/s12665-015-4315-9 [ Links ]

Unger, C. J., Lechner, A. M., Kenway, J., Glenn, V., & Walton, A. (2015). A jurisdictional maturity model for risk management, accountability and continual improvement of abandoned mine remediation programs. Resources Policy, 43, 1-10. doi: 10.1016/j.resourpol.2014.10.008 [ Links ]

United States Environmental Protection Agency (USEPA). (2009). National primary drinking water regulations. US Federal MLCs. Esdat environmental database management software. EPA 816-09-004 Retrieved from ]

United States Environmental Protection Agency (USEPA). (2017). Regional screening level (RSL) Summary table (TR=1E‐06, HQ=0.1). Retrieved from ]

Received: December 07, 2017; Accepted: June 26, 2018

*Corresponding author:, tel.: +52 (496) 963 0240

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License