Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ciencias agrícolas
versión impresa ISSN 2007-0934
Rev. Mex. Cienc. Agríc vol.7 no.2 Texcoco feb./mar. 2016
Articles
Sphenarium purpurascens control with Beauveria bassiana and extracts amaranth (Amaranthus hypocondriacus L.)
1CIBA-Tlaxcala-Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, km 1.5, C. P. 90700 Tlaxcala, México. (vaja750210@ hotmail.com; marthadbm1104@yahoo.com.mx; dheliad@hotmail.com; soleilng@yahoo.com.mx).
2Centro de Agroecología Instituto de Ciencias Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, C.P. 72570 Puebla, Puebla, México. (betzabeth.perez).
The cultivation of amaranth (Amaranthus hypocondriacus L.), is affected by the attack of insect pests; among which Sphenarium purpurascens Charp, is one of the main pests caused considerable losses and generate heavy spending on its chemical control. Therefore, it is necessary to have economic control alternatives that are harmless to the environment and human health. The objective of this research was to determine the effect of Beauveria bassiana (Balsam) in combination with aqueous extracts of chicalote (Argemone mexicana L.), pepper (Capsicum frutescens L.) and higuerilla (Ricinus comunis L.) for controlling S. purpurascens in amaranth. When testing laboratory the effect of B. bassiana on S. purpurascens five treatments and a control (water) topically inoculated and incubated at temperatures of 26 ± 1 °C and RH= 70 ± 10%), eight days after the inoculation was 100% mortality in the 2nd and 4th nymphal stage with 1.0 X 108 and 1.0 X 109 conidia mL-1, while adult mortality was 76 and 81%, respectively. Field effect extracts chicalote (Argemone mexicana) + (Ricinus comunis) + B. bassiana was determined; extracts of higuerilla + pepper (Capsicum frutescens) + B. bassiana; B. bassiana (no extracts) and control (water) on the number of live grasshoppers grasshoppers per experimental unit, defoliation percentage and grain yield. Treatment of extracts from higuerilla + chile + B. bassiana had the lowest number of grasshoppers (18. 88%), lower percentage of damage to the foliage (11.77) and the highest grain yield 2 001.48 kg ha-1.
Keywords: Amaranthus hypocondriacus L.; Argemones mexicana; Beauveria bassiana; Ricinus comunis; Sphenarium purpurascens
El cultivo de amaranto (Amaranthus hypocondriacus L.), se ve afectado por el ataque de insectos plaga; entre las cuales Sphenarium purpurascens Charp, es uno de las principales plagas ocasionado pérdidas importantes, además de generar gastos fuertes en su control químico. Por lo anterior, es necesario contar con alternativas económicas de control que sean inocuas al ambiente y la salud humana. El objetivo de esta investigación fue conocer el efecto de Beauveria bassiana (Balsamo) en combinación con extractos acuosos de chicalote (Argemone mexicana L.), chile (Capsicum frutescens L.) e higuerilla (Ricinus comunis L.) para el control de S. purpurascens en amaranto. Al probar en laboratorio el efecto de B. bassiana sobre S. purpurascens de cinco tratamientos y un testigo (agua) inoculados tópicamente e incubados a temperaturas de 26 ± 1 ºC y HR= 70 ± 10%), a los ocho días después de la inoculación hubo el 100% de mortalidad en el 2º y 4º estadio ninfal con 1.0 X 108 y 1.0 X 109 conidios mL-1, mientras que en adultos la mortalidad fue de 76 y 81%, respectivamente. En campo se determinó el efecto de extractos de chicalote (Argemone mexicana) + higuerilla (Ricinus comunis) + B. bassiana; extractos de higuerilla + chile (Capsicum frutescens) + B. bassiana; B. bassiana (sin extractos) y testigo (agua) sobre el número de chapulines vivos chapulines por unidad experimental, porcentaje de defoliación y rendimiento de grano. El tratamiento de extractos de higuerilla + chile + B. bassiana presentó el menor número de chapulines (18. 88%), menor porcentaje de daño al follaje (11.77) y la mayor producción de grano 2001.48 kg ha-1.
Palabras claves: Amaranthus hypocondriacus L.; Argemones mexicana; Beauveria bassiana; Ricinus comunis; Sphenarium purpurascens
Introduction
The amaranth (Amaranthus hypochondriacus L.) is a group pseudocereal dicots with C4 metabolism, able to grow in semi-arid conditions (Teutonico and Knorr, 1985; Kauffman and Weber, 1990). Amaranth grain is a source of squalene and fatty acids such as palmitic, oleic and linoleic (He et al., 2002); protein and essential amino acids such as lysine, methionine and tryptophan; it is also a potential source of flavonoids. Therefore, global amaranth cultivation is an alternative to food security by reducing hunger and malnutrition (Barba de la Rosa et al., 2009).
In 2010 the state of Puebla was the largest producer of amaranth with 64.3%, followed by State of Mexico (12.7%), Morelos (7.8%), Guanajuato (5.8%), Tlaxcala (4.9%), Federal District (4.3%) and Queretaro with 0.1% (SIAP, 2010). In the same year the harvest amaranth nationwide was 3 870 tons, which accounted for 2 488.5 tonnes Puebla; Municipality Tochimilco being the largest producer with 1418 tonnes (SAGARPA, 2012). Grasshoppers of pyrgomorphidae family, is the major pest in different parts of Mexico, doing damage to the foliage in various crops. Since the beginning of agriculture the locusts have been one of the most important in world agriculture pests (Weiland et al., 2002), causing several important damage to the foliage of cereals, vegetables and fruit (Lockwood et al., 2002).
Over the past 50 years in Canada and the United States it has been estimated to cause losses in the grasshopper annual crops 6 million; having higher losses of up to $200 million (Sultan and Fielding 2003). In Mexico Sphenarium purpurascens Charp causes significant losses in crops of beans, corn and pasture, in the United whose altitude is more than 2 000 meters as Chihuahua, Durango, San Luis Potosi, Hidalgo, State of Mexico, Michoacan, Puebla, Tlaxcala and Guanajuato (Garcia and Lozano 2011).
Pérez-Torres et al. (2011a) show that in Tochimilco, the amaranth is attacked by many insect pests that damage the foliage and panicle among them S. purpurascens, Epicauta cinerea (Forster), Spodoptera exigua (Hübner), Pholisora catullus Fab, Macrosiphum sp., and Lygus lineolaris (Palisot De Beauvois). S. purpurascens starts to defoliate the crop from its emergency throughout the growing cycle. As Aragon et al. (2011) consider this species as one of the main insects that damage the foliage. Faced with the threat of insect, amaranth producers increased application of synthetic insecticides and as a result has acquired resistance (Hemingway et al., 2002; Li et al., 2007); furthermore, the excessive use of pesticides has caused health problems, water pollution, soil and air (Aragon and Tapia, 2009).
These problems have been forced to seek alternatives to synthetic insecticides to control this pest, so Iannacone and Reyes (2001) recommends the use of natural products derived from plants, they do not produce an imbalance in the ecosystem. The use of plants with properties insectistatic is an ancient technique used in many countries such as Mexico and Central America, dating from the time of the Aztecs and Mayans as an example of this corn mixture with pepper Capsicum frutescens Hill, (Solanaceae) and Ruta graveolens L., (Rutaceae) or garlic Allium cepa L., (Alliaceae) (Silva et al., 2002), but with the advent of synthetic insecticides use was discontinued.
In Mexico since the early 80's there are reports of 1 600 species of plants that have shown activity against different insect pests, acting variously as attractants, repellents, stimulating or inhibiting the oviposition and feeding or just act as confounders (Silva et al., 2003), as in the case of Argemone mexicana L., which has been used to combat pests, thanks to the seed has toxic compounds to an oil to control the ant, beetle, Mexican bean beetle weevil, armyworm, cotton pests and pests of sugarcane (De Poll, 1988; Cuevas et al., 1991; Aragón and Lopez, 1994; Lagunes, 1994), Capsicum frutescens L., acts as an insecticide and repellency or deterrent against aphids, mites, whiteflies, coffee berry borer and maize weevil (Ramirez, 2004; Salvadores et al., 2007) and Ricinus communis L., has insecticidal activity against several species of insect pests, especially against larvae and thrips (Rojas and Chavez, 2007), its toxic activity was tested against leaf-cutting ant (Bigi et al., 2004), and aphid repellent.
Entomopathogenic fungi have been extensively studied for its ability to control crop pests of economic importance. Beauveria bassiana (Balsam) infects a wide host range and can be used as a biopesticide against various kinds of insects, it is effective for the control of S. purpurascens to penetrate the insect cuticle, so you do not need to eat the grasshopper this body (Huerta et al., 2014). The aim of this study was to evaluate the effect of B. bassiana and aqueous plant extracts chicalote (Argemone mexicana), pepper (Capsicum frutescens) and higuerilla (Ricinus communis) in controlling Sphenarium purpurascens in the cultivation of amaranth.
Materials and methods
To know whether the strain of B. bassiana is pathogenic on different stages of S. purpurascens, it was first isolated from the grasshoppers collected in the field in San Lucas Tulcingo, Township Tochimilco after the pathogenicity test was performed on the 2nd and nymphs 4, stage, and adult. They conducted three bioassays, under a design in randomized complete block design with five treatments and four replications, the experimental unit was a plastic container of one liter where 10 individuals of S. purpurascens were placed (according to the state of developing for each insect bioassays each), which were fed with leaves of greenhouse grown chard: where four concentrations were tested inoculum 1 x 106, 1 x 107, 1 x 108 and 1.2 x 109 spores ml -1 and the control (distilled water with two drops of Tween 80). Grasshoppers nymphal stages 2 and 4 were each inoculated with 2 mL of the spore suspension in the back of the insect pronotal (Douglas et al., 1997).
The experimentarles units adult insects were sprayed with 3 mL of the appropriate spore suspension. Mortality was recorded every 24 hours and dead insects were placed in a humid chamber to verify that the infection was caused by B. bassiana, through microscopy. Mortality obtained was corrected by Abbott's formula (1925), the data obtained by analysis of variance (ANOVA) and comparison of means by Tukey test (α= 0.05) were submitted. Calculations and statistical tests were performed using the software Statgraphics Plus for Windows 4.1. Also the determination of the average lethal time (LT50) using the statistical model Probit was obtained (Finney, 1972).
Field test. This work was done during the season 2011 in the agricultural area of San Lucas Tulcingo, Municipality of Tochimilco, Puebla (length: 18° 50' 14 '', latitude: 98° 35' 42'' and an altitude of 1950 m), annual rainfall of about 877 mm and four types of climate: semi-warm humid, humid temperate, humid and cold semifreddo (INAFED, 2009). The vegetation corresponds to a wooded area of pine and pine-oak associated with shrubs and trees, deciduous forest and induced pasture (INEGI, 2010).
The plant material used to prepare the extracts were collected in March and May 2011, A. mexicana (Papaveraceae) foliage and flowers were collected; R. comunis (Euphorbiaceae) and C. frutescens var. Serrano (Solanaceae) the fruit used. He was allowed to dry on newspaper and in the shade for 20 days, until complete dehydration. The dry mass was pulverized in an electric mill (Nixtamatic), sieved through a number 20 mesh (Mont stainless steel) and stored in paper bags in a cool dry place until the experiment.
To carry out the study a representative plot of the study area where fallow was performed, tracking and laced with animal traction was selected. A. hypochondriacus seed obtained from the harvest of the previous cycle, sowed 24 June 2011, laying 6-8 amaranth seeds in the bottom of the furrow and covered with dry soil of the same plot. The seed mixed 24 hours before dry horse manure (2 kg of seed per 30 kg of manure), and seeded together. The distance between each seed point was 60 cm, and between groove and groove 80 cm. Once the plants had a height of 15 cm on average, three plants were allowed to kill.
Treatments tested were higuerilla + chicalote + Beauveria bassiana, higuerilla + chile + B. bassiana, B. bassiana and the witness who was to apply only water. In all treatments with B bassiana 3.2 x 1010 spores mL-1 were used. Biological treatment (extracts + entomopatógenos) were applied every week and alternated with the application of a suspension dunce soap bar (3, 4, 4 tricloracarbanilida). The design was randomized complete block design with four treatments and nine repetitions. The experimental unit had an area of 53.7 m2, featuring eight groove and each group contained groove 14th floor, while the useful plot consisted of four rows and each present eight plants (32 central plants), in an area of 15.36 m2.
For extracts 3%, 30 g of plant material were weighed of each species were macerated and diluted in 1 liter of water; with respect to the combinations of the two plants, each 15 g were used for the same volume of water. The extracts were stirred with a wooden paddle for 20 minutes and allowed to stand for 24 h, then filtered through a fine mesh (tricot), and was transferred to a spray bag of 15 liters, also was incorporated the formulation of B. bassiana spores and applications were made. These applications are held every week. Applications of these treatments alternated with applications soap tablet (0.6%). 100 g of soap were weighed and passed through a grater, diluted in 16 liters of water and allowed to stand for 24 h, and finally with a fine mesh filter to be transferred into a backpack spray. four biologics and four soap suspension: a total of eight applications were made.
For the inoculum of the fungus, in volumes of 200 g grain rice (no testa), they were hydrated for two hours in 160 thousand of distilled water plus 131 mg of ampicillin, then the grain was drained for one hour on a frame with plastic fabric and eventually screened poured into poly-bags and sterilized at 121 °C for 15 min. The sterilized rice was inoculated in a laminar flow hood with a spore suspension of B. bassiana at a concentration of 1.5 x 109 spores / mL by adding by pipette 10 ml of the suspension polipapel each bag, covering the whole grain obtain a homogeneous distribution of the suspension in the substrate. The inoculated bags are incubated at a temperature of 27 ± 2 °C, relative humidity and photoperiod 12:12 hour light-dark for 15 days. Spores recovered by filtration and sieving, was placed in a desiccator for two hours to reduce the moisture content of the spores. Subsequently 2.5 g of spores (3.2 x 1010 spores/mL) were weighed and dissolved in 20 mL of sterile sunflower oil, mixed on a vortex for 10 min and kept at 4 °C until application.
To estimate the biological effectiveness of the treatments was evaluated: number of grasshoppers per useful plot: the number of grasshoppers that were found in each of the plants useful plot was recorded. Percentage of damage foliage consumed: the three plants that made up the kills as 100% and by direct observation the percentage of damage of plants were considered invalid. Grain yield: once the harvest took place was cleaned and seed weight in a granataria balance, getting the weight in kilograms by useful plot for each treatment and then extrapolated kg ha-1. Those data were verified the hypothesis of homogeneous variance by Bartllet test, analysis of variance and multiple comparison of means by Tukey test (p≤ 0.05) (Steel and Torrie, 1960) was performed. Calculations and statistical tests were performed using the Statgraphics Centurion XVI software (Statgraphics, 2010).
Results and discussion
Laboratory bioassays
At seven days after inoculation (ddi) in second instar nymphs of S. purpurascens, 100% mortality was obtained in all concentrations (1.0 x 106 to 1.0 x 109 spores/mL). In the fourth nymphal stage ddi 80% mortality was obtained with concentrations of 1.0 x 107 to 1.0 x 109 spores mL-1 and six days to 100% mortality at all concentrations. These results agree with those reported by Garcia and Gonzalez (2009) who cite that B. bassiana at doses of 1.2 x 109 mL-1 blastosporas caused 100% mortality of the nymphs of S. purpurascens.
Treatments 1 x 108 and 1 x 109 spores / mL caused increased mortality in adults S. purpurascens than other treatments with mortality rates of 80 and 76%, respectively (Table 1). These results are similar to those reported by Adatia et al. (2010) who obtained 50% mortality of grasshoppers at 5 and 6 days and 90% mortality on days 6 and 7. Consistent percent mortality increased with increasing concentration of spores, these results are similar to as described by Eken et al. (2006).
Beauveria bassiana (esporas ml) | (%) de mortalidad 土 error estándar |
Testigo (agua) | 0.0 土 0.0 a* |
l.0 x l06 | 43.3 ±0.76 b |
l.0 x l07 | 53.2±0.87 b |
l.0 x l08 | 76.0 + 0.28 c |
1 0 x l09 | 81.0±0.0 c |
* Medias con la misma letra, no difieren significativamente (p≤ 0.05). EE= error estándar.
The B. Basiana concentration (1 x 109) had the lowest TL50, to annihilate the nymphs of the 2nd and 4th stage, as well as adults of S. purpurascens, they are found on the third and fourth days of making the inoculum fungus, followed by 1 x 108 finding that TL50, nymph 2 was observed at day 4, while the four nymph and adult mortality is presented on the fifth day. Treatment (1 x 106) had the lowest TL50, between different states of the grasshopper (6, 7 and 8) with a difference of one day (Table 2). These figures are equivalent to research conducted by Berlanga and Hernandez (2002), who concluded that the isolation of B. bassiana, TL50 present in an area of 5.5 days causing adult mortality Schistocerca piceirons piceifrons (Orthoptera: Acrididae) of 76%.
Tratamientos (esporas mL-1) | TL50 (días) / estadio de S. purpurascens | ||
Ninfa 2 | Ninfa 4 | Adulto | |
L x 106 | 6 | 7 | 8 |
L x 107 | 5 | 6 | 6 |
L x 108 | 4 | 5 | 5 |
L x 109 | 3 | 4 | 4 |
Testigo | 0 | 0 | 0 |
Trabajo de campo.
Also, Castillo (2014), indicates that at higher concentrations of B. bassiana time mortality in adults of Sitophilus zeamais Motschulsky applied, is smaller than when applied at low concentrations since this time is longer. This approach consistent with that reported by De la Rosa et al. (2002), who mentioned that the aggressiveness of a strain is determined based on the median lethal time (LT50), considering a strain more aggressive and one that kills its host in less time. Differences in the days when the organisms die are variable and depending on the strain of entomopathogenic fungus, its concentration, the host where it was isolated the pathogen, age and sex of the host which is being evaluated (Maniania and Ondulaja, 1998).
The number of S. purpurascens found in plants amaranth after performing applications treatments evaluated in different times are shown in Table 3. Treatments higuerilla + chile + B. bassiana and B. bassiana caused a decrease in the number of grasshoppers that other treatments in the four readings. The higuerilla + chile + B. bassiana caused a minor significance (p≤ 0.05) in the number of individuals in the last two readings 48 and 18% respectively. The combination of higuerilla and chili served to protect the crop from Amaranth to reduce insect pest infestations of the foliage in 39.7%, plus the extract of higuerilla when applied alone also causes decreases by 27.2% compared to the control, which the author attributed to this plant has toxic and antifeedant effects while chili cause repellent effects, which will make the insects feeding on neighboring crops (Pérez-Torres, 2012). The combination of plant extracts and B. bassiana have a good effect on the presence of grasshoppers (Caffarini et al., 2008).
Tratamientos | Número de chapulines | |||
36 días | 50 días | 65 días | 79 días | |
Higuerilla+chicalote+ в. bassiana | 134.33±11.14 a | 76.44 ±14.90 a | 58.66± 18.02 a | 20.22 ±3.67 a* |
Higuerilla+chile+ в. bassiana | 121 55±3.53 a | 81 22±1224 a | 48 77+ 12 39 a | 18 88 + 3 07 a |
В. bassiana | 139 11±8 70 a | 126 33+22 66 b | 71 55 + 14 14 a | 57 22 + 5 72 b |
Testigo (agua) | 148 33±6 59 a | 159 55 + 15 83 b | 135.55 ±13.09 b | 120.22±13.97 c |
* Medias con diferente letra de la columna son significativamente diferentes (p≤ 0.05). EE= error estándar.
The results of the percentage of damage to the foliage of amaranth shown in Table 4, where we observed that the treated Higuerilla + chile + B. bassiana plants suffered less damage in both assessments (13.4 and 11.7%). These results agree with those reported by Pérez-Torres (2012), who says that by applying the aqueous higuerilla + chile 3% less damage occurs by insect pests in plants amaranth. Also in concentrations of 10% as an infusion and macerated, lower levels of damage are obtained by conchuela bean Epilachna varivestias Mulsant. This behavior can occur because the higuerilla presents repellent effect, so the plant aqueous extract caused significant repellency Thrips tabaci Liderman 75%, which was to protect the cultivation of onion (Duran, 2007). Another treatment that was successful was Higuerilla + chicalote + B. bassiana, which showed 17.8 and 14.2% damage.
Tratamientos | (%) de daño del follaje | |
50dds | 87dds | |
Higuerilla+chicalote+ B. bassiana | 17.88±1.25 a* | 14.22±0.89 a |
Higuerilla+chile+ B. bassiana | 13.44±0.78 b | 11.77±0.59 a |
В. bassiana | 26.66± 1.99 b | 14.11±0.75 a |
Testigo (agua) | 32.11±2.24 b | 42.88±2.38 b |
* Medias con diferente letra de la columna son significativamente diferentes (p≤ 0.05). E. E= error estándar.
Damage to foliage pests was observed in cells treated with the extract chicalote + chile plants was 3% lower in the first reading, showing a slight decrease in the second reading. The extract of Argemone sp., Is used to protect stored grain corn, beans and garbanzo at laboratory against S. zeamais, Zabrotes subfasciatus (Boheman) and Callosobruchus maculatus (F), 100% (Cuevas et al., 2006). To reduce damage Ducrot (2005) recommends the use of aqueous plant extracts with repellent or irritant properties, whose action as biocontrol, is due to secondary metabolites.
The extract of B. bassiana is observed in the first reading strong grasshopper damage (26.6%), but declined sharply in the second reading (14.1%). In the state of Zacatecas, Lozano and Spain (2011) obtained satisfactory results where B. bassiana is an effective alternative against S. purpurascen always and when used as a preventive measure; ie make applications in the months of June and July, while in the nymphs emerge and are observed in its early stages feeding on the weed.
Tratamientos | Rendimiento de grano (kg ha1) | Incremento del rendimiento del grano con respecto al testigo (%) |
Higuerilla+chicalote+ B. bassiana | 1553.33 + 105.15 a* | 90.30 |
Higuerilla+chile+ B. bassiana | 2001.48 + 446.16 b | 145.21 |
В. bassiana | 1322 96+ 027 42 с | 06208 |
Testigo (agua) | 816.21 ±25.05 d | ---------- |
*Medias con diferente letra de la columna son significativamente diferentes (p≤ 0.05) con respecto al testigo.
The tratamento based higuerilla + chile + B .bassiana had the best average production 2 001.48 kg ha-1 seed amaranth, while in the witness 816.21 kg ha-1 was obtained was statistically less than the production of other treatments with these data was an increase in the production of 145.21% over the control. Similar results were obtained by Aragon et al. (2002), who by using R. communis extract have an average seed yield of 1 951 kg ha-1 increased production by 48% compared with the control. Pérez-Torres (2011b) states that aqueous extracts protect plants from insect pests amaranth foliage, increasing production by 61% compared with the control.
Aragon and Tapia (2009), maintain that there is better protection in the cultivation of A. hypochondriacus from damage by insect pests on foliage and increased production, using different mixtures of plants like chicalote, chile and higuerilla, as well as applications with plant extracts are alternated with neutral soap tablet have better results because the soap breaks or destroys the cuticle membrane larvae causing desiccation and death (Szumlas, 2002; Vincent et al., 2003), there are growth hormone disruption preventing them from shedding and blocked spiracles suffocating. The soft soap is effective against arthropods as thrips, mites, aphids and whitefly (Karlsson, 2005). Vegetable insecticides have the advantage of being compatible with other options under acceptable risk in the control of insects, such as pheromones, oils, soaps, entomopathogenic fungi, predators and parasitoids, which greatly increases your chances of be part of a management program integrated pest Management (Molina, 2001).
Conclusions
In laboratory bioassays, the nymphal stage 2 was highly susceptible to infection with the fungus Beauveria bassiana an LC50 of 1 x 106 spores / mL and TL50 for 3 days.
Rates higher for S. purpurascens mortality after 8 days they showed concentrations of B. bassiana 1.0 x 108 spores / mL and 1.0 x 109 spores / mL, obtained 100% mortality for the nymph 2 and 4 both concentrations of 76 and 81% mortality in the adult stage respectively.
The higuerilla extracts and chili combined with B. bassiana in alternate applications soap suspensions were effective in controlling S. purpurascens and increased grain yield in the cultivation of amaranth (Amaranthus L. hypocondriacus).
Literatura citada
Abbot, W. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265-267. [ Links ]
Adatia, A.; Johnson, D. and Entz, S. 2010. Pathogenicity of two new isolates of Metarhizium anisopliae from Canadian soil to Melanoplus bivittatus (Orthoptera: Acrididae) and Tenebrio molitor (Coleoptera: Tenebrionidae). The Canadian Entomologist. 142:128-134. [ Links ]
Aragón, G. A. y Tapia, A. M. R. 2009. Amaranto orgánico: métodos alternativos para el control de plagas y enfermedades. Benemérita Universidad Autónoma de Puebla (BUAP). Alternativas y Procesos de Participación Social, A. C. Puebla, México. 63 p. [ Links ]
Aragón, G. A. y López-Olguín, J. F. 1994. Estudio en laboratorio de dos plantas utilizadas para el combate de las principales plagas de maíz almacenado. In: Memorias del V Encuentro Regional de Investigadores en Flora y Fauna de la Región Centro Sur de la República Mexicana. Toluca, Estado de México. 9 p. [ Links ]
Aragón, G. A.; López-Olguín, J. F.; Tapia, A. M. R.; Bonilla, N. F. y Pérez-Torres, B. C. 2002. Extractos vegetales una alternativa para el control de plagas del amaranto Amaranthus hypochondriacus L. In: métodos para la generación de tecnología agrícola de punta. Aragón, G. A.; López-Olguín, J. F. y Tornero, M. C. (Eds). Publicación especial de la Benemérita Universidad Autónoma de Puebla. Puebla (BUAP). México. 125-137 pp. [ Links ]
Aragón, G. A.; Damián, M. A. H.; Huerta, M. L.; Sáenz-de-Cabezón, F. J.; Pérez-Moreno, I.; Marco-Macebón, V. y Lopéz-Olguin, J. F. 2011. Insect occurrence and losses due to phytophagous species in the amaranth Amaranthus hypocondriacus L. crop in Puebla, Mexico. Afr. J. Agric. Res. 6:5924-5929. [ Links ]
Barba de la Rosa, A. P.; Fomsgaad, I. S.; Laursen, B.; Mortensen, A. G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J. and De León-Rodríguez, A. 2009. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci. 49:117-121. [ Links ]
Berlanga, P. A. M. y Hernández, V. M. V. 2002. Efecto de la temperatura sobre el crecimiento y la virulencia de Metarhizium anisopliae, M. a. var acridum y Beauveria bassiana en Schistocerca piceifrons piceifrons. Manejo Integrado de Plagas. 63:51-55. [ Links ]
Bigi, M. F.; Torkomian, V. S.; Groote, M. J.; Hebling, A.; Bueno, O. C.; Pagnocca, F. C.; Fernandes, J. B.; Vieira, P. C. and Da Silva, M. F. 2004. Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gogylophorus. Pest Management Science. 60:933-938. [ Links ]
Caffarini, P.; Carrizo, P.; Pelicano, A.; Roggero, P. y Pacheco, J. Z. 2008. Efectos de extractos acetónicos y acuosos de Ricinus communis (ricino), Melia azedarach (paraíso) y Trichillia glauca (trichillia), sobre la hormiga negra común (Acromyrmex lundi). World Wide Sci. 26:59-64. [ Links ]
Castillo, V. H. 2014. Evaluación de cal viva y Beauveria bassiana para el manejo del gorgojo del maíz (Sitophilus zeamais Motschulsky) en condiciones de laboratorio. Tesis de Licenciatura. Benemérita Universidad Autónoma de Puebla(BUAP). Puebla, México. 55 p. [ Links ]
Cuevas, S. M. I.; Romero, C. A. N. y García, J. C. M. 1991. Utilización del chicalote Argemone mexicana (Papaveraceae) como una alternativa para el control del gorgojo pinto del frijol Z. subfasciatus (Bohn) (Coleoptera: Bruchidae). In: Memorias del II Simposio nacional sobre sustancias vegetales y minerales en el combate de plagas. Sociedad Mexicana de Entomología. A. C. Oaxaca, Oaxaca, México. 3-10 pp. [ Links ]
Cuevas, S. M. I.; García, J. C. M. y Romero, C. A. N. 2006. Productos naturaleza para el control de la principal plaga del maíz, frijol y garbanzo almacenado. Bol. Asoc. Esp. Ent. 30(1-2):83-92. [ Links ]
De la Rosa, W.; López, F. L. and Liedo, P. 2002. Beauveria bassiana as a pathogen of the Mexican fruitfly (Diptera: Tephritidae) under laboratory conditions. J. Econ. Entomol. 95:36-43. [ Links ]
De Poll, E. 1998. Plantas tóxicas de Guatemala en casa y en el campo. In: Ciencia y Acción No. 5. Universidad del Valle de Guatemala. Guatemala, C. A. 5 p. [ Links ]
Douglas, D. G.; Johnson, D. L. and Goettel, M. S. 1997. Effects of temperature and sunlight on mycosis (Beauveria bassiana) (Hyphomycetes: Sympodulosporae) of grasshoppers under field conditions. Biological Control. 26:400-409. [ Links ]
Ducrot, P. H. 2005. Organic chemistry´s contribution to the understanding of biopesticida activity of natural products from higher plants. In: Regnault, R. C.; Philogene, B. J. J. y Vincent, C. (Eds.). Biopesticides of plant origin. Lavoiser and Intercept, Ltd., Paris and Andover. 313 p. [ Links ]
Durán, L. V. A. 2007. Evaluación de extractos vegetales como alternativa de control de Thrips tabaci Lindeman (Thysanoptera: Thripidae). Tesis de maestría. Maestría en Ciencias Ambientales. Benemérita Universidad Autónoma de Puebla (BUAP). Puebla, México. 82 p. [ Links ]
Eken, C.; Tozlu, G. and Dane, E. 2006. Pathogenicity of Beauveria bassiana (Deuteronmycotina: Hyphomycetes) to larvae of the small poplar longhorn beetle, Saperda populnea (Coleoptera: Cerambycidae). Mycopathologia. 162:69-71. [ Links ]
García, G. C. y Lozano, J. G. 2011. Control biológico de plagas de chapulín en el norte-centro de México. Universidad Autónoma de Zacatecas (UAZ). Zacatecas, México. 170 p. [ Links ]
García, G. C. y González, M. B. 2009. Control biológico de plaga de chapulín (Orthoptera: Acrididae) en Durango, México. Vedalia. 13:79-83 [ Links ]
He, H. P.; Cai, Y.; Sun, M. and Corke, H. 2002. Extraction and purification of squalene from Amaranthus Grain. J. Agric. Food Chem. 50:368-372. [ Links ]
Hemingway, J.; Field, L. and Vontas, J. 2002. An overview of insecticide resistance. Science 298:96-97. [ Links ]
Huerta, A. J.; Espinoza F.; Téllez-Jurado, A.; Maqueda-Gálvez, A. P. y Arana-Cuenca, A. 2014. Control biológico del chapulín en México. BioTecnología. 18:28-49. [ Links ]
Iannacone, J. O. y Reyes, M. U. 2001. Efecto de la rotenona y neem sobre Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) y Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) plagas del tomate en el Perú. Agronomía Tropical. 51:65-79. [ Links ]
INAFED. 2009. Enciclopedia de los municipios del estado de Puebla. Tochimilco del Gobierno del estado de Puebla, Puebla, México. 13 p. [ Links ]
INEGI. 2010. Síntesis geográfica, nomenclátor y cartográfico del estado de Puebla. México, D. F. 56 p. [ Links ]
Finney, D. J. 1972. Probit analysis. Cambridge University Press. 76-80 pp. [ Links ]
Kauffman, C. S. and Weber, L. E. 1990. Grain amaranth. In: Janick, J. and Simon, J. E. (Eds.). Advances in new crops. Proceedings of the First National Symposium on New Crops, Research, Development, Economics. Timber Press, Portland, OR. 127-139 pp. [ Links ]
Karlsson, M. F. 2005. Bekämpning av vita flygare (Aleurotrachelus socialis) i kassava (Manihot esculenta). Dept. of Landscape Management and Horticultural Technology, SLU. Rapport (Sveriges lantbruksuniversitet, Institutionen för landskaps- och trädgårdsteknik). 2:1-70. [ Links ]
Lagunes, T. A. 1994. Extractos y polvos vegetales, y minerales para el combate de plagas de maíz y del frijol en la agricultura de subsistencia. CP; USAID; CONACYT; BORUCONSA. 33 pp. [ Links ]
Li, X. C.; Schuler, M. A. and Berenbaum, M. R. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann. Rev. Entomol. 52:231-253. [ Links ]
Lockwood, J. A.; Anderson-Sprecher, R. and Schell, S. P. 2002. When less is more: optimization of reduced agent-area treatments (RAATs) for management of rangeland grasshoppers. Crop Protrotection. 21:551-562. [ Links ]
Lozano, G. J. y España, M. P. L. 2011. Ecología y control biológico del chapulín Brachystola spp. en Zacatecas. In: control biológico de plagas de chapulín en el norte-centro de México. García, G. C. y Lozano, G. J. (Eds.). Universidad Autónoma de Zacatecas. Zacatecas, México. 139-150 pp. [ Links ]
Maniania, N. K. and Ondulaja, A. 1998. Effect of species, age, and sex of tse-tse on response to infection by Metarhizium anisopliae. Biocontrol. 43:311-323. [ Links ]
Molina, N. 2001. Uso de extractos botánicos en el control de plagas y enfermedades. In: avances en el fomento de productos fitosanitarios no sintéticos. Manejo Integrado de Plagas . 56-59 pp. [ Links ]
Pérez-Torres, B. C. 2012. Diagnóstico y control de plagas del cultivo de Amaranthus hypochondriacus L., bajo una agricultura orgánica, en las faldas del volcán Popocatepetl. Tesis de Doctorado. Doctorado en Ciencias Ambientales. Benemérita Universidad Autónoma de Puebla (BUAP). Puebla, México. 130 p. [ Links ]
Pérez-Torres, B. C.; Aragón, V.; Pérez, G. R. A.; Hernández, L. R. y LópezOlguín, J. F. 2011a. Estudio en tomo faunístico del cultivo de amaranto (Amaranthus hypocondriacus L.) en Puebla, México. Rev. Mex. Cienc. Agríc. 2:359-371. [ Links ]
Pérez-Torres, B. C.; Aragón, A. G.; Pérez, R. A.; Hernández, L. R. y López, J. F. O. 2011b. Evaluación de extractos vegetales y jabón de pastilla para el control de plagas del amaranto en las faldas del Popocatepetl, Puebla. In: Bernal, M. H. y Ramírez, V. B. (Eds.). Investigación Interdisciplinaria para el Desarrollo Rural en Puebla y Tlaxcala. Colegio de Posgraduados, Campus Puebla. Puebla, Puebla, México. 166-182 p. [ Links ]
Ramírez, A. C. 1994. Parámetros de estabilidad en rendimiento y otros caracteres agronómicos en amaranto (Amaranthus spp.). Tesis profesional. Departamento de Fitotecnia. Universidad Autónoma Chapingo (UACH), México. 67 p. [ Links ]
Rojas, H. M. y Chávez, J. R. 2007. La etnobiotecnología en el control de plagas en la horticultura de Sololá, municipio de Sololá y Almolonga, municipio de Quetzaltenango. Informe final. Instituto de Estudios Interetnicos. Universidad de San Carlos de Guatemala. 116 p. [ Links ]
SAGARPA. 2012. Servicio de Información Agroalimentaria y Pesquera (SIAP). Cierre de producción agrícola del cultivo de amaranto. http://www.siap.gob.mx [ Links ]
Salvadores, U. Y.; Silva, G. A.; Tapia, M. V. and Hepp, R. G. 2007. Spices powders for the control of maize weevil, Sitophilus zeamais Motschulsky, in stored wheat. Agricultura Técnica. 67(2):147-154. [ Links ]
SIAP. 2010. Anuario estadístico de la producción agrícola. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. http://www.siap.gob.mx/aagricolasiap. [ Links ]
Silva, G. A.; Lagunes J.; Rodríguez, C. y Rodríguez, D. 2002. Insecticidas vegetales; una vieja y nueva alternativa en el manejo de insectos. Revista Manejo Integrado de Plagas y Agroecología. 66:4-12. [ Links ]
Silva, G. A.; Lagunes A. y Rodríguez, J. C. 2003. Control de Sitophilus Zeamais (Coleoptera: Curculionidae) con polvos vegetales solos y en mezclas con carbonato de calcio en maíz almacenado. Ciencia e Investigación Agraria. 30:153-160. [ Links ]
Statgraphics. 2010. Statgraphics Centurion XVI User Manual. Stat Point Tecnologies, Inc. 305 p. [ Links ]
Steel, R. G. and Torrie, J. H. 1960. Principles and procedures of statistic. McGraw-Hill Book Company Inc. New York, EUA. 362 p. [ Links ]
Sultan, H. B. and Fielding, D. J. 2003. Damage potential of grasshoppers (Orthoptera: Acrididae) on early growth stages of smallgrains and Canola under Subarctic. J. Econ. Entomol. 96:1193-1200. [ Links ]
Szumlas, D. E. 2002. Behavioral responses and mortality in german cockroaches (Blattodea: Blattellidae) after exposure to dishwashing liquid. J. Econ. Entomol. 95:390-398. [ Links ]
Teutonico, R. A. and Knorr, D. 1985 Amaranth: composition, properties and applications of a rediscovered food crop. Food Technol. 39:49-61. [ Links ]
Vincent, C.; Hallman, G.; Panneton, B. and Fleurat, F. L. 2003. Management of agricultural insects with physical control methods. Annual Review of Entomology. 48:261-81. [ Links ]
Weiland, R. T.; Judge, F. D.; Pels, T. and Grosscurt, A. C. 2002. A literature review and new observations on the use of difubenzuron for control of locusts and grasshoppers throughout the world. J. Orthoptera Res. 11:43-54. [ Links ]
Received: August 2015; Accepted: January 2016