Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Journal of behavior, health & social issues (México)
versión impresa ISSN 2007-0780
J. behav. health soc. ISSUES vol.4 no.2 Cuernavaca nov. 2012
https://doi.org/10.5460/jbhsi.v4.2.34104
Artículos empíricos
Academic skill profiles in a sample of Mexican school children
Perfiles de habilidades académicas en una muestra de niños mexicanos
Dulce María Belén Prieto-Corona, Mario Arturo Rodríguez-Camacho, María Guillermina Yáñez-Téllez, Jorge Bernal-Hernández, Juan Felipe Silva-Pereyra, Ma. de Lourdes Luviano-Vargas, Erzsébet Marosi-Holczberger, Vicente Guerrero-Juárez
Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Estado de México.
Received: July 27, 2012
Revised: August 19, 2012
Accepted: October 15, 2012
Abstract
It is important to understand learning disabilities (LD) because they are prevalent worldwide. Currently there is great controversy about LD definition, as some studies focus on the discrepancy between intelligence and academic skills, while others focus only on academic skill assessments. The DSM-IV-TR provides the most commonly used definition for LD, which includes specific learning disabilities (reading, writing, arithmetic) and unspecified learning disabilities. For specific one would expect a significant discrepancy between academic skills and IQ, in contrast, significant discrepancies should not be observed in the unspecified. The literature also reports comorbidities among LD types. The objective of this study was to evaluate reading, writing, and arithmetic task performance profiles in 127 public elementary school children. Based on DSM-IV-TR criteria, we determined academic skill profiles, the presence of LD, LD type, and potential comorbidities in our sample. Using normalized test scores for reading, writing, and arithmetic, we applied a hierarchical cluster analysis to identify academic skill patterns. The results showed the following clusters among school children: 1) children with normal academic skills (n = 80), 2) children with unspecified LD including deficiencies in all three academic processes (n = 27), and 3) children with specific reading LD including arithmetic and writing deficiencies (n = 20). These classification types may later help identify specific neuropsychological characteristics underlying a specific disability, and subsequently facilitate treatments.
Key words: Learning disabilities, reading disabilities, LD subtypes, hierarchical-clusters.
Resumen
Es importante comprender los problemas de aprendizaje (PA) debido a su prevalencia mundial. Actualmente existe una gran controversia respecto a la definición de los PA, ya que algunos estudios se enfocan sobre las discrepancias entre la inteligencia y las habilidades académicas, mientras otros se ocupan solo de la evaluación de las habilidades académicas. El DSM-IV-TR ofrece las definiciones de uso más común para los PA, que incluyen tanto problemas de aprendizaje específicos (lectura, escritura y aritmética), como problemas de aprendizaje no específicos. Por problemas específicos uno podría esperar una discrepancia significativa entre habilidades académicas y el C.I., en contraste, dichas discrepancias no estarían presentes en los problemas no específicos. La literatura también reporta comorbilidades entre los tipos de PA. El objetivo de este estudio fue evaluar los perfiles de ejecución en tareas de lectura, escritura y aritmética de 127 niños de una escuela primaria pública. A partir de los criterios del DSM-IV-TR, determinamos los perfiles de habilidades académicas, la presencia de PA, su tipo, y las comorbilidades potenciales de la muestra. Empleando calificaciones normalizadas de las pruebas de lectura, escritura y aritmética, aplicamos un análisis jerárquico de cúmulos para identificar los patrones de habilidades académicas. Los resultados muestran los siguientes cúmulos entre los escolares: 1) niños con habilidades académicas normales (n = 80), 2) niños con PA no específicos que incluían deficiencias en los 3 procesos académicos (n = 27), y 3) niños con PA específicos que incluyeron deficiencias en aritmética y escritura (n = 20). Esos tipos clasificatorios pueden posteriormente ayudar a identificar características neuropsicológicas subyacentes de una discapacidad específica, y facilitar el tratamiento subsecuente.
Palabras clave: Problemas de aprendizaje, problemas de lectura, subtipos de problemas de aprendizaje, análisis jerárquico de cúmulos.
Introduction
"Learning Disabilities" (LD) refers to a spectrum of reading, writing, or arithmetic deficiencies found in children. It is important to study these disorders because they are prevalent worldwide. Depending on the nature of the assessment and the specific definition, it is estimated that learning disabilities are prevalent in 2-10% of children. In the United States, approximately 5% of public school students present some form of LD. In Mexico, The Special Education General Direction reports that 10% of school-aged children require its services and that two-thirds of these children, present LD. Subsequently, these data suggest that 6-7% of the general school-age population has LD (Fletcher & Kaufman, 1995). Therefore, if there are 14,887,845 school-aged children (INEGI, 2010), and 6% of these individuals have learning disabilities, then approximately 893,271 children in Mexico have a learning disability.
There are different definitions and categories for LD. For example, some criteria focus on the discrepancy among intelligence-academic skills (American Psychiatric Association [APA], 2003; Watkin, Kush, Schaefer, 2002), while other definitions focus only on academic performance. The latter definition is often used because evidence shows that, regardless of intelligence quotient (IQ) level, children with reading retardation (without discrepancy) and students with reading disorders (with discrepancy IQ-academic skills) have similar cognitive deficits (Jiménez, Siegel and Rodrigo, 2003; Siegel, 1989).
The Diagnostic and Statistical Manual of Mental Disorders-Revised (DSM-IV-TR) (APA, 2003) includes disorders first diagnosed in infancy, childhood, or adolescence, and provides the LD definition utilized in many studies. The DSM-IV-TR LD criteria are based on strengths and weaknesses of different academic skills such that for each type of LD, the main manifestation is found in the deficiency of a specific academic skill. The manual considers that, "Exist a learning disability when the individual's performance in reading, arithmetic or written expression is substantially below that expected for age, schooling and level of intelligence according to indicated the normalized tests applied individually". Performance that is "substantially below" is defined as a discrepancy between academic skills and IQ that is greater than 2 standard deviations.
In addition, the DSM-IV-TR divides LD into specific and unspecified categories. Criteria for a specific LD type include the following: 1) Reading learning disability, characterized by substantially lower accuracy, speed, and/or reading comprehension than the expected performance for an individual's age, IQ, and schooling, as assessed by normalized tests. 2) Mathematical disability, characterized by substantially lower arithmetic ability than the expected performance for an individual's age, IQ, and schooling, as assessed by normalized tests. 3) Written expression disability, characterized by substantially lower writing ability than the expected performance for an individual's age, IQ, and schooling, as assessed by normalized tests.
Unspecified LD includes impairments that do not satisfy the criteria of any one specific learning disability. For example, this category refers to observed deficiencies in reading, mathematics, and written expression, which may significantly interfere with academic performance even if standardized tests do not show scores that are substantially below the expected performance for an individual's age, IQ, and appropriate grade level.
Reading deficiencies are the most prevalent type of specific LD (Fletcher, Lyon, Fuchs, Barnes, 2007; Kirtley & Dennis, 2005; Stanovich, 1988) and consequently are the most commonly researched LD. The prevalence of reading disabilities is estimated between 5-17.5%, constituting the most commonly reported learning disability in American and European literature and affecting 80% of subjects identified with an LD. A theme that has been debated in this area, is if exist an unique children group, with specific Reading disability with different difficult degrees in reading, or if in fact exist children subgroups with qualitatively different characteristics (Menghini et al. 2010, Rodriguez et al., 2006). For this reason the classification, diagnostic and treatment accu rate of this disability require of methods that impinge in the specific valuation of the underlying processes to the reading acquirement.
Although not considered the existence of subtypes of reading disorders, there are many neuropsychological researches that emphasize the heterogeneity of characteristics present in this type of disabilities, therefore some subtypes among specific RD children are proposed. Diverse reports in the literature conclude that children with LD are a heterogeneous group, since their deficiencies can be found in various phases of the information processing. Thus, some LD children show greater deficiencies in attention processes, others in the working memory and others at linguistic processing (Fletcher, 2009; Silva et al., 1995; Swanson & Jerman, 2010; Yanez, 2000).
The DSM-IV-TR mentions that, "Reading disability is frequently associated with both mathematics disability and written disability, being relatively rare to find some of these in the absence of the first one". The reading disability, alone or in combination with a mathematics disability or written expression, occurs approximately in 4 of each 5 cases of Learning disability (APA, 2003).
Nonetheless, some studies are report related to each specific disabilities, in isolated or in combination. (e.g. reading/arithmetic or arithmetic/ writing) (Landerl & Moll, 2010).
Individuals with LD make up an interesting diagnostic category for both clinical practice and research purposes. Unfortunately, the prevalence of learning disabilities and our understanding of specific learning impairment categories remain unclear in Latin American populations (Talero, Espinoza & Velez, 2005). In addition, few LD comorbidity studies exist due to the focus on reading-related LD. Moreover, there is not a consistent definition for LD and some studies fail to report specific diagnostic criteria and assessment instruments, which makes it difficult to establish comparisons among studies. Therefore, this investigation aimed to assess reading, writing, and arithmetic performance profiles in Mexican public elementary school children in order to better understand LD types, prevalence, and potential comorbidity among LD subgroups.
Method
Participants
Public elementary school children (1st-6th grade) from Tlalnepantla y Tultitlán municipalities in México State participated in this study. The sample included 127 children between 7 and 12 years old (X = 9.9 years, SD ± 1.3). Boys accounted for 87.4% of participants, while girls made up 12.6% of subjects. All children presented a normal IQ (X = 100.4, SD ± 13.3) according to WISC-R, and were clinically and neurologically healthy according to a clinical-neurological evaluation by a specialist. All children came from medium-low socioeconomic levels. The participant's parents provided informed consent for their children's participation in this study.
Instruments
Trained clinical psychologists administered the following instruments to all children:
1) Structured LD interview to gather pathological personal antecedents and non-pathological, heredofamilial, pre-peri and postnatal, school history, development, and emotional aspects.
2) Intelligence scale revised for school-level children (WISC-R) (Wechsler, 1981): Intelligence tests for children 6-16 years old. These tests included a verbal and execution scale and determined intelligence levels and mental retardation.
3) Neuropsychological Battery for Learning Disabilities (NBLD; Yáñez, Bernal, Harmony, Marosi, & Rodríguez, 2002). This battery evaluated cognitive functions in school-aged children (7 to 12 years) with normative data for each age group. In order to classified the children reading subtests assessed accuracy and speed of reading words (low and high frequency for real words, pseudo-words, and pseudo-homophones) and comprehension accuracy of written texts. Accuracy and speed were also measured in a writing subtest (the dictation of low and high frequency words and pseudo-words). The arithmetic subtests evaluated accuracy to dictation of numbers and accuracy in solving operations in oral and written forms. These variables were used because they are part of the classification criteria for the three specific LD subtypes.
Design
This was a transversal and descriptive study designed to identify academic skill profiles in Mexican school-aged children.
Statistical analyses
The SPSS statistical software package (version 19.0 for Windows) analyzed all data. Hierarchical conglomerate analyses included standardized scores for reading speed and writing words, reading comprehension, reading accuracy and word writing, and the accuracy of dictation of numbers and arithmetic operations for both oral and written forms.
The hierarchical conglomerates analysis was completed using Wards Method of minimum variance, with a measure of squared Euclidean distance, to identify patterns of academic skills using the neuropsychological battery. The conglomerates analysis is a classification technique that forms homogeneous groups while taking complex data into account (Borgen & Barnett, 1987).
Once conglomerates were obtained, a oneway ANOVA (analysis of variance) was conducted between groups to assess differences in academic skills (reading, writing and arithmetic) among the obtained conglomerates. The Lows Squared Differences method. (LSD) was used for post-hoc analyses.
Results
The conglomerate analysis generated an agglomeration coefficient revealing one cut point with three solutions of conglomerates, and a visual inspection of the dendrogram confirmed this finding. The following three groups were obtained: conglomerate 1: n = 80, conglomerate 2: n = 27, and conglomerate 3: n = 20.
Table 1 shows the Z-score average and standard deviation of the conglomerate groups for each academic skill variable. Significant group differences (ANOVA results) are also reported in Table 1.
ANOVA results showed that children in conglomerate 1 were faster and more accurate at reading words, had greater success on the reading comprehension subtest, had more hits in word and number dictation, and had better oral and written arithmetic operations compared to groups 2 and 3. Conglomerate 1 was also faster at word dictation compared to conglomerate 3 (see Table 1).
ANOVA findings revealed that conglomerate 2 was faster and more accurate at reading words and had more hits in word dictation compared to conglomerate 3. Although conglomerate 2 showed a marginal improvement in word reading speed compared to conglomerate 3, this result was not statistically significant (see Table 1).
Moreover, both groups of conglomerates 2 and 3 showed low scores on the reading comprehension's subtest, dictation of numbers and had low number of hits in arithmetic operations as much as in oral way as written.
Discussion
This study identified three different academic skill profiles in school-aged children. Conglomerate 1 was the largest group (n = 80), and it presented a profile with average scores similar to those observed in children with normal academic skills. Conglomerate 2 (n = 27) presented a below average profile, with reading, writing, and arithmetic scores 1 to 2 standard deviations below normal scores. This profile reflected an unspecified learning disability because there was not a substantial discrepancy between IQ and academic skills. In contrast, conglomerate 3 (n = 20) was characterized by a below average proile with speed scores and reading accuracy more than 2 standard deviations below normal scores; however reading comprehension scores, writing, and arithmetic ability were between 1 to 2 standard deviations below normal scores. This group reflected a comorbid profile of a reading learning disability with arithmetic and writing deiciencies.
Alvarez and Conde-Guzon (2009) realized a study to differentiate subtypes of children with learning disabilities using neuropsychological, cognitive and behavioral variables. They found four groups: 1) dyslexic disability, 2) generalized deficit, 3) attention deficit and 4) minimum deficit. The 1 and 2 groups are similar to those found in this study because they presented main deiciencies in reading and minimal in the other academic skills.
Our findings indicate that the NBLD subtests may distinguish children with normal academic skills from those with learning disabilities. Our results showed that of the children with LD, 57.4% had an unspecified learning disability, while 42.6% presented a comorbid reading disability with arithmetic and writing deficiencies. Our findings differ from those reported by Dirks, Spyer, van Lieshout and de Sonneville (2008), as in the present study we found arithmetic deiciencies in children who presented greater deiciencies in reading words than in reading comprehension. Prior research also shows that the main deficiency in RD children is word recognition (Soriano, 2004; Vellutino, Fletcher, Snowling & Scanlon, 2004) rather than reading comprehension.
Fletcher et al. (2007) consider that there are several levels of LD classification: deficits in specific academic skills exist at the first level, while specific child characteristics including cognitive and sub-cognitive processes (e.g. deficits in phonological awareness, or rapid automatized naming, etc.) determine specific academic skill deficiencies (e.g. word recognition or reading accuracy) in the second level. Both levels are important as an adequate classification system facilitates understanding of LD nature, type, core deficits, and treatments. The present study focused on the first level of LD classification, as we described deficits in reading, writing, and arithmetic skills, not neuropsychological profiles properly.
On the other hand, all of our subjects had a normal IQ, and only one group showed a discrepancy between IQ and academic skills. These results are similar to other LD findings such that the specific reading disability particularly, seem to represent a continuous of severity in the reading difficulty more than in a dichotomous explicit category related with a cut point according to academic skills (has or has not Reading disability) (Fletcher et al., 2007; Shaywitz, 2004; Stanovich, 1988), which means differences are more qualitative than quantitative (Büttner & Hasselhorn, 2011).
These considerations are supported by results of investigations that compared the performance of children with and without IQ-academic skills discrepancy in various cognitive skills (e.g. phonological processing, or rapid automatized naming or vocabulary). These deficiencies in cognitive skills only vary in grade but are present in both groups (Hoskyn y Swanson, 2000; Restori, Katz, Lee, 2009; Stuebing et al., 2002).
According to Fletcher et al. (2007) the core deficit of a specific LD is its alteration in any academic domain (reading, writing, or mathematics). Although it is common for LD children to present alterations in more than one academic skill area, research shows that comorbidity of disabilities is most frequently observed between reading and arithmetic (Alvarez & Conde-Guzon, 2009; Fletcher, 2005; Geary, 2004; Geary & Hoard, 2001; Landerl, Fussenegger, Moll, Willburger, 2009; Vilenius-Tuohimaa, Aunola & Nurmi, 2008). For example, Geary and Hoard (2001), and Andersson (2008) and Hawort et al. (2009) suggest that reading and arithmetic disabilities are more related because they share genetic aspects, and specific deficits such as the representation and retrieval of semantic information from long term memory. However, it should be noted that other authors claim that reading and writing comorbidities are the most frequently shared disability (Defior, 2000; Landerl & Moll, 2010; Yoshimasu et al., 2012). Given that many LD children display deficiencies across several domains, it is important to evaluate all academic skill areas in order to understand an individual's strengths and weaknesses (Fletcher, Francis, Morris & Lyon, 2005).
Conclusions
The hierarchical conglomerate analysis in school-aged children using the variables of reading, writing and arithmetic of a neuropsychological battery identified three different academic skills profiles. From these profiles, two LD groups were distinguished: a nonspecific group with reading, writing, and arithmetic deficiencies (conglomerate 2) and a specific reading-impaired group with writing and arithmetic comorbid deficiencies (conglomerate 3). It should be noted that we detected deficiency comorbidities among these three processes despite a small sample size. The first LD classification level used in this study may help identify the neuropsychological profiles, it means the specific characteristics of the cognitive affected processes, that classified children with learning disabilities. Based upon our findings, we believe that it is important to consistently evaluate a range of academic ability because omitting one skill area may mask comorbid deficiencies, which may explain the lack of consistent results found in the LD literature. Moreover, our findings may help identify groups with more homogeneous characteristics, and subsequently assist with treatment plans.
References
Álvarez, T., & Conde-Guzón, P. (2009) Formación de Subtipos de niños con problemas de aprendizaje a partir de la evaluación neuropsicológica: Capacidades cognitivas y comportamiento. Clínica y Salud, 20(1), 19-41. [ Links ]
American Psychiatric Association -APA- (2003) Manual Diagnóstico y Estadístico de los Trastornos Mentales - Tratado Revisado (DSM-IV-TR). Barcelona: Masson. [ Links ]
Andersson, U. (2008) Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100 (1), 48-66. Available via: http://dx.doi.org/10.1037/0022-0663.100.1.48 [ Links ]
Borgen, F., & Barnett, D. (1987). Applying cluster analysis in counseling psychology research. Journal of Counseling Psychology, 34, 456-458. Available via: http://dx.doi.org/10.1037/0022-0167.34.4.456 [ Links ]
Büttner, G., & Hasselhorn, M. (2011) Learning Disabilities: Debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58(1),75-8. Available via: http://dx.doi.org/10.1080/1034912X.2011.548476 [ Links ]
Defior, S. (2000) Las dificultades de aprendizaje: Un enfoque cognitivo (Lectura, Escritura, Matemáticas). Aljibe: España. Available via: http://dx.doi.org/84-87767-59-1 [ Links ]
Dirks, E., Spyer, G., van Lieshout, E., & de Sonneville, L. (2008) Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities. 41, 460-473. Available via: http://dx.doi.org/10.1177/0022219408321128 [ Links ]
Fletcher, J. (2005) Predicting math outcomes: Reading predictors and comorbidity. Journal of Learning Disabilities, 38, 308-312. Available via: http://dx.doi.org/10.1177/00222194050380040501 [ Links ]
Fletcher, J. (2009) Dyslexia: The evolution of a scientific concept. Journal of International Neuropsychology Society, 15(4), 501-508. Available via: http://dx.doi.org/10.1017/S1355617709090900. [ Links ]
Fletcher, J., Francis, D., Morris, D., & Lyon, G. (2005) Evidence-based assessment of learning disabilities in children and adolescents. Journal of Clinical child And Adolescent psychology, 34, 506-522. Available via: http://dx.doi.org/10.1207/s15374424jccp3403_7 [ Links ]
Fletcher, J., Lyon, G., Fuchs, L., & Barnes, M. (2007) Learning Disabilities: from identification to intervention. New York: The Guilford Press. Available via: http://dx.doi.org/10.1080/09297040701455171 [ Links ]
Fletcher, T., & Kaufman, C. (1995) A Mexican perspective on Learning Disabilities. Journal of Learning Disabilities, 29(9), 530-534. Available via: http://dx.doi.org/10.1177/002221949502800901 [ Links ]
Geary, D., & Hoard, M. (2001) Numerical and arithmetical deficits in learing-disabled children: relation to dyscalculia and dyslexia. Aphasiology, 15 (7), 635-647. Available via: http://dx.doi.org/10.1080/02687040143000113 [ Links ]
Geary, D. (2004) Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15. Available via: http://dx.doi.org/10.1177/00222194040370010201 [ Links ]
Hawort, C., Kovas, Y., Harlaar, N., Hayiou-Thomas, M., Petrill, S., Dale, P., & Plomin, R. (2009) Generalist genes and learning disabilities: a multivariate genetic analysis of low performance in reading, mathematics, language and general cognitive ability in a sample of 8000 12-year-old twins. Journal Child Psychology and Psychiatry. 50(10), 1318-25. Available via: http://dx.doi.org/10.1111/j.1469-7610.2009.02114.x. [ Links ]
Hoskyn, M., & Swanson, H. (2000) Cognitive processing of low achievers and children with reading disabilities: A selective meta-analytic review of the published literature. School Psychology Review, 29, 102-129. [ Links ]
INEGI (2010) recuperado de http://www.inegi.org.mx/sistemas/sisept/default.aspx?t=medu18&s=est&c=21789
Jiménez, J., Siegel, L., & Rodrigo, M. (2003) The relationship between IQ and reading disabilities in English-speaking Canadian and Spanish children. Journal of Learning Disabilities. 36, 15-23. Available via: http://dx.doi.org/10.1177/00222194030360010301 [ Links ]
Kirtley, T., & Dennis, C. (2005) Electroencephalogram biofeedback for reading disability and traumatic brain injury. Child Adolescent Psychiatric Clinics of North America. 14, 137-162. Available via: http://dx.doi.org/10.1016/j.chc.2004.07.001 [ Links ]
Landerl, K., Fussenegger, B., Moll K., & Willburger E. (2009) Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309-24. Available via: http://dx.doi.org/10.1016/j.jecp.2009.03.006 [ Links ]
Landerl, K. & Moll, K. (2010) Comorbidity of learning disorders: prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287-294. Available via: http://dx.doi.org/10.1111/j.1469-7610.2009.02164.x [ Links ]
Menghini, D., Finzi, A., Benassi, M., Bolzani, R., Facoetti, A., Giovagnoli, S., Ruffino, M., & Vicari, S. (2010) Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia. 48(8), 863-872. Available via: http://dx.doi.org/10.1016/j.neuropsychologia.2009.11.003 [ Links ]
Restore, A., Katz, G., & Lee, H. (2009) A Critique of the IQ/Achievement discrepancy model for identifying specific learning disabilities. Europe's Journal of Psychology. 5(4), 128-144. Available via: http://dx.doi.org/10.5964/ejop.v5i4.244 [ Links ]
Rodríguez, M., Prieto, B., Bernal, J., Marosi, E., Yañez, G., Harmony, T., Silva-Pereyra, J., Hernández, M., Fernández- Bouzas, A., Rodríguez, H., Luviano, L., & Guerrero, V. (2006) Language Event-Related Potentials in Poor Readers. In Soren, R. (Ed) Learning Disabilities: New Research. New York: Nova Publishers. [ Links ]
Shaywitz, S. (2004) Overcoming dyslexia. New York: Knopf. [ Links ]
Siegel, L. (1989) IQ is irrelevant to the definition of learning disabilities. Journal of Learning Disabilities. 22, 469-479. Available via: http://dx.doi.org/10.1177/002221948902200803 [ Links ]
Silva, J., Harmony, T., Bernal, J., Fernández, T., Rodríguez, M., Reyes, A., et al. (1995) Comparación entre las habilidades en la lectura de dos grupos con diferentes desempeño académico. Revista Latina de Pensamiento y Lenguaje, 3(1), 65-81. [ Links ]
Snowling, M. (2008) Specific disorders and broader phenotypes: the case of dyslexia. Quarterly Journal of Experimental Psychology, 61, 142-166. Available via: http://dx.doi.org/10.1080/17470210701508830 [ Links ]
Soriano, M. (2004) Perspectivas actuales en el estudio de la dislexia evolutiva. Editorial Revista electrónica de investigación psicoeducativa y psicopedagógica, 2 (2), 1-4. Recuperado de http://www.investigacion-psicopedagogica.org/revista/articulos/4/espannol/Art_4_50.pdf [ Links ]
Stanovich, K. (1988) Explaining the differences between the dyslexic and the garden-variety poor reader: the phonological core variable-difference model. Journal of Learning Disabilities, 21(10), 590-604. Available via: http://dx.doi.org/10.1177/002221948802101003 [ Links ]
Stuebing, K., Flethcer, J., LeDoux, J., Lyon, G., Shaywitz, S., & Shaywitz, B. (2002) Validity of IQ-discrepancy classifications of reading disabilities: A meta-analysis. American Educational Research Journal, 39, 469-518. Available via: http://dx.doi.org/10.3102/00028312039002469 [ Links ]
Swanson, H., & Jerman, O. (2010) Reading Disorders. Encyclopedia of Library and Information Sciences (3er Ed.). London: Taylor & Francis. Available via: http://dx.doi.org/10.1081/EELIS3-120043678. [ Links ]
Talero, C., Espinoza, A., & Vélez, A. (2005) Dificultad de aprendizaje de la lectura en las escuelas de una localidad de Bogotá. Acta de Neurología Colombiana, 21 (4), 280-288. [ Links ]
Vellutino, F., Fletcher, J., Snowling, M., & Scanlon, D. (2004) Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 2-40. Available via: http://dx.doi.org/10.1046/j.0021-9630.2003.00305.x [ Links ]
Vilenius-Tuohimaa, P., Aunola, K., & Nurmi, J. (2008) The association between mathematical problems and reading comprehension. Educational Psychology, 28(4), 409-426. Available via: http://dx.doi.org/10.1080/01443410701708228 [ Links ]
Watkins, M., Kush, J., & Schaefer, B. (2002) Diagnostic utility of the learning disability index. Journal of Learning Disabilities, 35(2), 98-103. Available via: http://dx.doi.org/10.1177/002221940203500201 [ Links ]
Wechsler, D. (1981) WISC-R-Español: Escala de inteligencia revisada para el nivel escolar. México: Manual Moderno. [ Links ]
Yáñez, G. (2000) Batería neuropsicológica para la evaluación de niños con trastornos del aprendizaje: estandarización con niños de la zona metropolitana de la Ciudad de México (Tesis doctoral). UNAM. [ Links ]
Yáñez, G., Bernal, J., Harmony, T., Marosi, E., & Rodríguez, M. (2002) Batería neuropsicológica para niños con trastornos del aprendizaje de la lectura (BNTAL): Obtención de normas. Revista de Pensamiento y Lenguaje, 10(2), 249-269. [ Links ]
Yoshimasu, K., Barbaresi, W., Colligan, R., Killian, J., Voigt, R., Weaver, A., & Katusic, S. (2011) Written-Language disorder among children with and without ADHD in a population-based birth cohort. Pediatrics. 128(3), e605-12. Available via: http://dx.doi.org/10.1542/peds.2010-2581 [ Links ]
Author's contribution to this paper was as follows: BPC: assessing children, experimental design, statistical analysis of the data, writing and reviewing of manuscript; MRC: experimental design, statistical analysis, writing and reviewing manuscript, GYT: assessing children and reviewing the manuscript; JBH: experimental design and reviewing manuscript. JSP: statistical analysis, LL: assessing children; EM: reviewing final version of the manuscript; VG: neurological evaluations.
Self-references for authors: 4
Self-references for the JBHSI: 0
Correspondencia:
Mario Rodríguez-Camacho, PhD.,
Laboratorio de Neurometría, FES Iztacala,
Universidad Nacional Autónoma de México,
Av. de los Barrios No. 1, Los Reyes Iztacala,
Tlalnepantla, México, C. P. 054090,
correo: marcizta@gmail.com
Information about authors:
Nombre: Dulce María Belén Prieto Corona. Grado: Doctor en Psicología. Adscripción: Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, FES Iztacala, Proyecto de Neurociencias, Laboratorio de Neurometría. Línea de investigación: Psicofisiología y neuropsicología de los procesos cognoscitivos (lenguaje y cálculo) en adultos y en niños normales y con trastornos de aprendizaje. Dirección postal: Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y Educación (UIICSE), cub. 16. FES Iztacala, Universidad Nacional Autónoma de México, Ave de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla Estado de México, México C.P. 54090. Correo: bemapado@gmail.com
Nombre: Mario Arturo Rodríguez Camacho. Grado: Doctor en Ciencias Fisiológicas. Adscripción: Universidad Nacional Autónoma de México, Facultad de Estudios Superiores (FES) Iztacala, Proyecto de Neurociencias, Laboratorio de Neurometría. Línea de investigación: Psicofisiología de los procesos cognoscitivos (lenguaje y memoria) en niños y en pacientes adultos con patología cognoscitiva. Dirección postal: Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y Educación (UIICSE), cub. 16. FES Iztacala, Universidad Nacional Autónoma de México, Ave de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla Estado de México, México CP 54090. Correo: marcizta@gmail.com
Nombre: Ma. Guillermina Yáñez Téllez. Grado: Dra. En Psicología, Universidad Nacional Autónoma de México. Adscripción: Universidad Nacional Autónoma de México. Proyecto en Neurociencias, Facultad de Estudios Superiores Iztacala, Profesor Titular "C" TC. Línea de investigación: Evaluación neuropsicológica del TDAH y de los trastornos del aprendizaje de la lectura. Otros cargos: Responsable académico de la Residencia en Neuropsicología Clínica en la FESI Distinciones: Distinción Universidad Nacional Para Jóvenes Académicos Dirección postal: Laboratorio de Neurometría. Edificio UIICSE, FES Iztacala, UNAM, Ave. de los Barrios No. 1, Colonia Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México. Correo: axel.enrique@gmail.com
Nombre: Jorge Bernal Hernández. Grado: Doctor en ciencias Fisiológicas. Adscripción: Universidad Nacional Autónoma de México, UNAM, Facultad de Estudios Superiores Iztacala, Laboratorio de Neurometría. Profesor Titular "C" Línea de Investigación: Estudio de los trastornos del aprendizaje infantil, electrofisiología de la atención y de la memoria. Dirección postal: Laboratorio de Neurometría. Edificio UIICSE, FES Iztacala, UNAM Ave. de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México. Correo: jbernal@unam.mx
Nombre: Juan Felipe Silva Pereyra. Grado: Doctor en Ciencias. Adscripción: Universidad Nacional Autónoma de México, Facultad de Estudios Superiores (FES) Iztacala, Proyecto de Neurociencias, Laboratorio de Neurometría. Línea de investigación: Psicofisiología de los procesos fonológicos, semánticos y sintácticos. Dirección postal: Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y Educación (UIICSE), FES Iztacala, Universidad Nacional Autónoma de México, Ave de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla Estado de México, México CP 54090. Correo: jsilvapereyra@gmail.com. Página web: www.jsilvapereyra.wordpress.com
Nombre: Ma. de Lourdes Luviano Vargas. Grados: Maestría en Psicología con Residencia en Neuropsicología Clínica. Adscripción: Universidad Nacional Autónoma de México, Investigación y Posgrado. FES-Iztacala. Líneas de investigación: Trastornos del Aprendizaje de la lectura en niños escolares. Dirección postal: Laboratorio de Neurometría. Edificio UIICSE, FES Iztacala, UNAM, Ave. de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México. Correo: lluviano@campus.iztacala.unam.mx
Nombre: Erzsébet Marosi Holczberger. Grado: Doctorado en Ciencias Fisiológicas, obtenido en el Instituto de Biomédicas, UNAM. Adscripción: FES Iztacala, Universidad Nacional Autónoma de México, UNAM. UIICSE, Proyecto de Neurociencias. Nombramiento: Titular "C" T.C. definitivo. Línea de investigación: Electrofisiología de la conducta emocional tratando de ver que las emociones de valencia positiva y negativa en cuáles áreas se codifican en el cerebro de humanos sanos. Dirección Postal: Laboratorio de Neurometría. Edificio UIICSE, FES Iztacala, UNAM, Ave. de los Barrios No. 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México. Correo: marosie@gmail.com y marosi@unam.mx
Nombre: Vicente Guerrero Juárez. Grado: Especialidad en Neurología en el Instituto Nacional de Neurología y Neurocirugía (Dr. Manuel Velasco Suárez). Adscripción: Instituto Nacional de Neurología y Neurocirugía (Dr. Manuel Velasco Suárez) adscrito al departamento de Urgencias y Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, adscrito a la carrera de medicina. Líneas de Investigación: Trastornos del desarrollo. Dirección Postal: Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx. C.P. 54090, Tel. +52-555-6231333 ext 39726 ó 39796. Correo: vic.gue.j@gmail.com