SciELO - Scientific Electronic Library Online

 
vol.92Áreas de endemismo de dos provincias biogeográficas del centro de México con base en sus Asteraceae endémicas: una propuesta de conservaciónLa complejidad biogeográfica de la Sierra de Juárez, Oaxaca, México, revelada a través del análisis de parsimonia de endemismos de especies de tricópteros (Insecta: Trichoptera) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de biodiversidad

versão On-line ISSN 2007-8706versão impressa ISSN 1870-3453

Rev. Mex. Biodiv. vol.92  México  2021  Epub 03-Fev-2022

https://doi.org/10.22201/ib.20078706e.2021.92.3739 

Biogeography

Biogeographic analysis of the American genus Echeandia (Agavoideae: Asparagaceae)

Análisis biogeográfico del género americano Echeandia (Agavoideae: Asparagaceae)

Juan Pablo Ortiz-Brunela  b 

Guadalupe Munguía-Linoa  b  c 

Arturo Castro-Castrod 

Aarón Rodrígueza  b  * 

a Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Botánica y Zoología, Herbario Luz María Villarreal de Puga, camino Ramón Padilla Sánchez 2100, 25510 Zapopan, Jalisco, Mexico

b Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Botánica y Zoología, Consejo Nacional de Ciencia y Tecnología, Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), camino Ramón Padilla Sánchez 2100, 25510 Zapopan, Jalisco, Mexico

c Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Botánica y Zoología, Cátedras Conacyt, camino Ramón Padilla Sánchez 2100, 25510 Zapopan, Jalisco, Mexico

d Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR-Durango), Cátedras Conacyt, calle Sigma 119, fraccionamiento 20 de Noviembre II, 34220 Durango, Durango, Mexico


Abstract

Echeandia (Asparagaceae) is an American genus of herbaceous geophytes. Its distribution is heterogeneous but concentrates along the Mexican Transition Zone (MTZ). We analyzed the species richness distribution and endemism of the group. We compiled a data base of 2,078 records obtained by revision of herbarium specimens, scientific publications, and electronic databases. Species richness was quantified under 4 different criteria. Also, we estimated the weighted endemism and the corrected weighted endemism index to detect centers of endemism. We identified 85 species and registered 74 in Mexico. The MTZ had 61 species and the Sierra Madre del Sur province was the most diverse with 39. The richest cell was located in the Transmexican Volcanic Belt and contained 12 species. In addition, 63 species (85.1%) present in Mexico were endemic. Weighted endemism showed 5 cells in the Sierra Madre del Sur and Balsas Basin in Mexico. In contrast, almost all the high valued cells of corrected weighted endemism index were located in South America. The results were congruent with the patterns of the geophytes and endemic angiosperms of Mexico. The MTZ has a complex tectonic, volcanic and climatic history. These factors have promoted the diversification of several angiosperm lineages, including Echeandia.

Keywords: Geophyte; Mexican Transition Zone; Sierra Madre del Sur; Species richness

Resumen

Echeandia (Asparagaceae) es un género americano de geófitas herbáceas. Su distribución es heterogénea, pero concentrada a lo largo de la Zona de Transición Mexicana (ZTM). Analizamos la distribución de la riqueza de especies y el endemismo del grupo. Compilamos una base de datos de 2,078 registros a partir de especímenes de herbario revisados, publicaciones científicas y bases de datos electrónicas. Cuantificamos la riqueza de especies usando 4 criterios distintos. Además, estimamos el endemismo ponderado y el índice de endemismo ponderado corregido para detectar centros de endemismo. Identificamos 85 especies y registramos 74 en México. La ZTM contuvo 61 especies y la Sierra Madre del Sur destacó con 39. La celda más rica se ubicó en el Eje Volcánico Transmexicano con 12 especies. Además, 63 especies (85.1%) presentes en México fueron endémicas. El análisis de endemismo ponderado mostró 5 celdas en la Sierra Madre del Sur y la Cuenca del Balsas en México. En contraste, casi todas las celdas con alto valor del índice de endemismo ponderado corregido se ubicaron en Sudamérica. Los resultados fueron congruentes con los patrones presentados por las geófitas y angiospermas endémicas de México. La ZTM tiene una compleja historia tectónica, volcánica y climática, factores que promovieron la diversificación de varios linajes de angiospermas, incluido Echeandia.

Palabras clave: Geófita; Zona de Transición Mexicana; Sierra Madre del Sur; Riqueza de especies

Introduction

Asparagaceae is the most diverse family of Asparagales. It includes 153 genera and 2,290-2,650 species distributed worldwide except in the Arctic (APG IV, 2016; Bogler et al., 2006; Pires et al., 2006). Chase et al. (2009) divided Asparagaceae into 7 subfamilies: Agavoideae, Aphyllanthoideae, Asparagoideae, Brodiaeoideae, Lomandroideae, Nolinoideae, and Scilloideae. This classification was further supported by a phylogenetic analysis based on DNA sequences from 4 plastid genes (Chen et al., 2013). Agavoideae has 30 genera with petaloid flowers and rosulate leaves (McKain et al., 2016). The genera Agave L. sensu stricto, Manfreda Salisb., Polianthes L., Yucca L. and Echeandia Ortega diversified in North America (Jiménez-Barron et al., 2020; McKain et al., 2016).

Echeandia is one of the most diverse genera in Agavoideae. It includes 85 species within the subgenera Echeandia and Mscavea Cruden (Rodríguez & Ortiz-Brunel, 2019). The former includes plants with flowers opening early in the morning, generally with elliptic white or yellow tepals, and ellipsoidal fruits. Most species grow above 1,500 m of elevation. In contrast, plants in the subgenus Mscavea have flowers which open near noon or later, most of them have narrowly elliptic white tepals and globose fruits. The plants grow below 1,500 m of elevation (Fig. 1).

Figure 1 Floral variation in Echeandia. A, E. pringlei Greenm.; B, E. occidentalis Cruden; C, E. gentryi Cruden; D, E. echeandioides (Schltdl.) Cruden. Photo credits: A, C, and D by Aarón Rodríguez; B by Juan Pablo Ortiz-Brunel. 

Echeandia is endemic to the American continent and Mexico is the center of diversification (Cruden, 2009; Rodríguez & Castro-Castro, 2005; Rodríguez & Ortiz-Brunel, 2019). The distribution of Echeandia extends across the Nearctic and Neotropical biogeographic regions proposed by Wallace (1876). The limits of these regions are located in the mountains of Mexico, Guatemala, and Honduras (Wallace 1876). Halffter (1964) named this area as the Mexican Transition Zone (MTZ). Based on Morrone et al. (2017), the MTZ includes the Sierra Madre Occidental (SMOc), the Sierra Madre Oriental (SMOr), the Transmexican Volcanic Belt (TVB), the Sierra Madre del Sur (SMS), and the Chiapas Highlands (CH) provinces.

Centers of angiosperm species richness are located in mountainous tropical regions, such as the MTZ (Barthlott et al., 2005). In Mexico, the greatest number of angiosperm species occurs in the temperate forests in some areas of the TVB, the SMS, and the CH (Cruz-Cárdenas et al., 2013; Villaseñor & Ortiz, 2014; Rodríguez et al., 2018). Geophyte diversity is concentrated along the TVB and SMS (Cuéllar-Martínez & Sosa, 2016). Total endemism in the Mexican flora ranges from 50 to 52% (Rzedowski, 2019; Villaseñor, 2016; Villaseñor & Ortiz, 2014). Its distribution is uneven but many centers have been located along the MTZ (Alcántara & Paniagua, 2007; Salinas-Rodríguez et al., 2017; Santiago-Alvarado et al., 2016; Sosa & de Nova, 2012; Torres-Miranda et al., 2013; Villaseñor & Ortiz, 2007). Also, the MTZ has been identified as the center of diversification of some angiosperm lineages such as Bletia Ruiz & Pav. (Sosa et al., 2016), Solanum sect. Petota Dumort. (Hijmans & Spooner, 2001), Phaseolus L. (Delgado-Salinas et al., 2006), Cosmos Cav. (Vargas-Amado et al., 2013), Dioon Lindl. (Gutiérrez-Ortega et al., 2018), Quercus L. (Hipp et al., 2018), Dahlia Cav. (Carrasco-Ortiz et al., 2019; Sánchez-Chávez et al., 2019), Pinus L. (Gernandt & Pérez-de la Rosa, 2014), and the tribe Tigridieae (Munguía-Lino et al., 2015). Based on these facts, we expect that the MTZ should host the greatest species richness and endemism of Echeandia. Our aims were to analyze the spatial distribution of species richness and endemism of this genus.

Materials and methods

We compiled taxonomic, geographic, ecological, and curatorial data from different sources to generate a database. We reviewed the Mexican herbaria CICY, CIIDIR, ENCB, HGOM, IBUG, IEB, MEXU, SLPM, UAT, UAMIZ, XAL, and ZEA. Also, we searched for the available electronic records of collections in ARIZ, ASC, ASU, BRIT, COL, MO, NMC, RENO, RM, SJNM, and SNM herbaria (Thiers, 2020). We added records from Central and Southern America contained at the Global Biodiversity Information Facility (GBIF, 2018) and included all the locations cited in Cruden (1981, 1986, 1987, 1989, 1993, 1994, 1999, 2009), Cruden and McVaugh (1989), López-Ferrari and Espejo-Serna (1995), López-Ferrari et al. (2002), Rodríguez and Ortiz-Catedral (2013), and Rodríguez and Ortiz-Brunel (2019).

We corroborated all taxonomic identifications and corrected some herbarium specimens if necessary. When a record lacked geographic coordinates but had a detailed written description of the locality, we manually georeferenced it using Google Earth Pro (Google, 2018) and the Mexican localities database of INEGI (2010). In other words, we followed the Spatial Analysis Georeferencing Accuracy (SAGA) protocol (Bloom et al., 2017). It maximized the accuracy of the inferred geographic coordinates. For the same record, the elevation was obtained from a digital model of elevation, using QGIS 2.14.3 (QGIS Development Team, 2018). Duplicated and doubtful entries were deleted. The database is available upon request.

The species richness was quantified by political limits, geographical criteria, biogeographic provinces and a cell grid. For the political limits, we used the Continental level of the World Geographical Scheme for Recording Plant Distributions (Brummitt, 2001), the political divisions of the countries, and the state divisions of Mexico (INEGI, 2010). Then, we determined the species richness by latitude, longitude, and elevation. We used the biogeographic regionalization proposal of Udvardy (1975) for the USA. But for Mexico and Latin America, we combined the proposals of Morrone (2014) and Morrone et al. (2017). An adequate cell size was estimated from the total distance between extreme data points (MxD) with DIVA-GIS 4.2 program (Hijmans et al., 2004). Then, we followed the method established by Willis et al. (2003) and modified by Suárez-Mota and Villaseñor (2011) to obtain a 45 × 45 km cell size. The grid analysis was performed with DIVA-GIS 4.2 (Hijmans et al., 2004).

Endemism was estimated by political limits and biogeographic provinces using the same parameters as species richness. Centers of endemism were identified using weighted endemism (WE) and corrected weighted endemism (CWE) parameters. The level of endemism within a cell, based on the species occurring in it, was estimated by the WE (Laffan & Crisp, 2003). In contrast, CWE calculates endemism based on the proportion of endemics of the cell in relation to its species richness. Generally, cells with more species should contain more endemics (Laffan & Crisp, 2003). We used the Biodiverse program to estimate both parameters (Laffan et al., 2010). Cell size was the same for the species richness and endemism analyses.

Results

The database contained 2,078 records and 85 species of Echeandia (Table 1). There were 1,846 entries for Mexico, 125 for the USA, 60 for South America and 45 for Central America (Fig. 2). We georeferenced 46.5% of the records. The number of records per species varied from 1 in Echeandia longifolia (Weath.) Cruden, E. macrophylla Rose ex Weath., E. molinae Cruden, and E. venusta Woodson to 322 in E. flavescens (Schult. & Schult.f.) Cruden. On average, each species had 24 records.

Table 1 Spatial distribution of species richness in Echeandia. Department, Province or State abbreviations: Ags, Aguascalientes; Ahua, Ahuachapán; Ala, Alajuela; AV, Alta Verapaz; BV, Baja Verapaz; Camp, Campeche; Car, Carabobo; CDMX, Ciudad de México; Chih, Chihuahua; Chiq, Chiquimula; Chis, Chiapas; Chon, Chontales; Coah, Coahuila; Col, Colima; Dgo, Durango; Est, Estelí; FM, Francisco Morazán; Gro, Guerrero; Gto, Guanajuato; Gua, Guanacaste; Guat, Guatemala; Hgo, Hidalgo; Huan, Huancavelica; Hue, Huehuetenango; Jal, Jalisco; Jala, Jalapa; Lem, Lempira; Mag, Magdalena; Mat, Matagalpa; Mex, Estado de México; Mich, Michoacán; Mor, Morelos; Nay, Nayarit; NL, Nuevo León; Oax, Oaxaca; Oco, Ocotepeque; Por, Portuguesa; Pue, Puebla; Punt, Puntarenas; QR, Quintana Roo; Qro, Querétaro; Sin, Sinaloa; SLP, San Luis Potosí; SM, San Marcos; Son, Sonora; SS, San Salvador; Tamps, Tamaulipas; Tlax, Tlaxcala; Tot, Totonicapán; Ver, Veracruz; Yuc, Yucatán; Zac, Zacatecas. Biogeographic provinces abbreviations: BB, Balsas Basin; CH, Chiapas Highlands; CHIH, Chihuahuan Desert; PL, Pacific Lowlands; SMOc, Sierra Madre Occidental; SMOr, Sierra Madre Oriental; SMS, Sierra Madre del Sur; TAMPS, Tamaulipas; TVB, Transmexican Volcanic Belt; VER, Veracruzan; YP, Yucatán Peninsula. 

Species Country Department, province or state Biogeographic province
1. E. albiflora M.Martens & Galeotti Mexico Pue, Ver TVB, VER
2. E. altipratensis Cruden Guatemala Hue, SM, Tot CH
Mexico Chis
3. E. atoyacana Cruden Mexico Gro, Mex BB, PL
4. E. attenuata Cruden Mexico Dgo, Sin PL, SMOc
5. E. bolivarensis Cruden Venezuela Bolívar Pantepui
6. E. breedlovei Cruden Mexico Chis, Oax PL, VER
7. E. campechiana Cruden Mexico Camp, Yuc YP
8. E. chandleri (Greenm. & C.H.Thomps.) Cruden Mexico, USA Coah, NL, Tamps, Texas CHIH, Grasslands, SMOr
9. E. chiapensis Cruden Mexico Chis, Oax AC, PL, VER
10. E. ciliata (Kunth) Cruden Peru Cajamarca Cauca, Puna, Yungas
11. E. coalcomanensis Cruden Mexico Jal, Mich, Nay SMS, TVB
12. E. confertiflora Cruden Mexico Oax BB
13. E. conzattii Cruden Mexico Gro, Oax BB, SMS, TVB
14. E. crudeniana Aarón Rodr. Mexico Nay PL
15. E. denticulata Cruden Colombia, Venezuela Boyacá, Cundinamarca Mérida Guajira, Magdalena, Paramo
16. E. drepanoides (Greenm.) Cruden Mexico Oax BB, SMS
17. E. durangensis (Greenm.) Cruden Mexico Ags, CDMX, Chih, Dgo, Gto, Hgo, Jal, Mex, Mich, Mor, NL, Qro, SLP, Ver, Zac CHIH, PL, SMOc, SMOr, TVB
18. E. echeandioides (Schltdl.) Cruden Mexico CDMX, Gro, Mex, Mich, Mor, Oax, Pue BB, SMS, TVB
19. E. elegans Cruden Mexico Gro, Mor BB, SMS
20. E. falcata Cruden Mexico Gto, Mich, Qro CHIH, SMOr
21. E. flavescens (Schult. & Schult.f.) Cruden Mexico Ags, CDMX, Chih, Coah, Dgo, Gto, Hgo, Jal, Mex, Mich, NL, Oax, Pue, Qro, SLP, Son, Tlax, Ver, Zac BB, CHIH, Chihuahuan, Grasslands, Madrean Cordillera, PL, Rocky Mountains, SMOc, SMOr,
USA Arizona, New Mexico, Texas SMS, Sonoran, TAMPS, TVB
22. E. flexuosa Greenm. Mexico Jal, Gto, Mich, Nay, Qro, Zac CHIH, PL, SMOc, TVB
23. E. formosa (Weath.) Cruden Honduras FM CH, SMS
Mexico Chis, Oax
24. E. gentryi Cruden Mexico Dgo, Jal, Nay, Sin, Zac PL, SMOc, TVB
25. E. gracilis Cruden Mexico CDMX, Hgo, Mex, Mor, Pue SMOr, TVB
26. E. graminea M.Martens & Galeotti Mexico Oax, Pue, Ver BB, PL, SMS, TVB
27. E. grandiflora Cruden Mexico Oax PL, SMS
28. E. hallbergii Cruden Mexico Oax SMS
29. E. herrerae (Killip) Cruden Peru Apurimac, Cuzco, Huan, Junín Rondônia, Ucayali, Yungas
30. E. hintonii Cruden Mexico Gro BB, SMS
31. E. hirticaulis Cruden Mexico Gro, Mex, Mich, Oax BB, SMS, TVB
32. E. imbricata Cruden Mexico Gro, Jal, Mich, Mor BB, PL, SMS, TVB
33. E. jaliscensis Aarón Rodr. & Brunel Mexico Jal TVB
34. E. lehmannii (Baker) Marais & Reilly Ecuador Pichincha Cauca
35. E. leucantha Klotzsch Colombia Mag CH, Guajira, Guatuso-Talamanca, PL, Puntarenas-Chiriquí, Savanna, Venezuelan
Costa Rica Ala, Gua, Punt
Honduras FM
Nicaragua Chon, Est, Mat
Venezuela Car, Por, Tovar, Zulia
36. E. llanicola Cruden Mexico Oax SMS
37. E. longifolia (Weath.) Cruden Mexico Oax SMS
38. E. longipedicellata Cruden Guatemala Hue CH, SMOc, SMS, TVB
Mexico Chis, Dgo, Gro, Jal, Mex, Mich, Mor, Oax, Pue, Tlax, Ver
39. E. luteola Cruden Belize Cayo VER, YP
Mexico Camp, QR, Yuc
40. E. macrophylla Rose ex Weath. Mexico SLP SMOr
41. E. magnifica López-Ferr., Espejo & Ceja Mexico Gro BB, SMS
42. E. matudae Cruden El Salvador Santa Ana, SS CH, PL, SMS, VER
Guatemala AV, Hue, Jala
Mexico Chis, Oax
43. E. mcvaughii Cruden Mexico Jal, Nay CHIH, PL, SMS, TVB
44. E. mexiae Cruden Mexico Gro, Oax BB, SMS, TVB
45. E. mexicana Cruden Mexico CDMX, Gto, Hgo, Jal, Mex, Mich, Mor, Nay, Oax, Pue, Qro, SLP, Ver BB, CHIH, PL, SMOc, SMOr, TVB
46. E. michoacensis (Poelln.) Cruden Mexico Col, Gto, Mich PL, SMOr, SMS, TVB
47. E. mirandae Cruden Mexico Oax, Pue BB, SMS
48. E. molinae Cruden Guatemala BV CH
49. E. montealbanensis Cruden Mexico Oax BB, PL, SMS
50. E. nana (Baker) Cruden Mexico CDMX, Gto, Hgo, Jal, Mex, Mich, Mor, Pue, Qro, SLP, Tlax, Ver CHIH, SMOr, TVB
51. E. nayaritensis Cruden Mexico Nay, Sin PL
52. E. novogaliciana Aarón Rodr. & Ortiz-Cat. Mexico Dgo, Nay, Zac CHIH, SMOc
53. E. oaxacana Cruden Mexico Oax BB, PL, SMS
54. E. occidentalis Cruden Mexico Jal, Mich, Nay, Sin, Zac BB, CHIH, PL, SMOc, TVB
55. E. palmeri Cruden Mexico Chih, Dgo, Son, Zac CHIH, SMOc
56. E. paniculata Rose Mexico CDMX, Gro, Gto, Hgo, Jal, Mex, Mich, Mor, Oax, Pue, Qro, SLP, Ver, Zac BB, CHIH, PL, SMOc, SMOr, TVB
57. E. parva Cruden Mexico Mor, Oax, Pue BB
58. E. parvicapsulata Cruden Mexico Col, Jal, Nay, Sin PL, SMS
59. E. parviflora Baker Guatemala Chiq BB, CH, CHIH, SMS, TVB, VER
Mexico Chis, Col, Gro, Jal, Mex, Mor, Oax, Pue, Ver
60. E. petenensis Cruden Belize Cayo, Toledo VER, YP
Guatemala Petén
Mexico Camp
61. E. pihuamensis Cruden Mexico Col, Jal PL
62. E. pittieri Cruden Colombia Mag, Valle del Cauca Guajira, Magdalena, Puntarenas-Chiriquí
Panama Chiriquí
63. E. platyphylla (Greenm.) Cruden Mexico Pue BB
64. E. pringlei Greenm. Mexico Jal, Nay TVB
65. E. pseudopetiolata Cruden Mexico Gro SMS
66. E. pseudoreflexa Cruden Mexico Chis CH, VER
67. E. ramosissima (C.Presl) Cruden Mexico Chih, Col, Dgo, Gro, Jal, Mex, Mich, Mor Nay, Sin, Son BB, CHIH, PL, SMOc, TVB
68. E. reflexa (Cav.) Rose Mexico Ags, CDMX, Chis, Gto, Hgo, Jal, Mich, NL., Oax, Pue, Qro, SLP, Tamps, Ver BB, CH, CHIH, PL, SMOc, SMOr, TVB, VER
69. E. robusta Cruden Mexico Jal PL, SMS, TVB
70. E. sanmiguelensis Cruden Mexico Gto CHIH
71. E. scabrella (Benth.) Cruden Mexico Ags, Coah, Chih, Dgo, Gto, Jal, Mich, Nay, Zac CHIH, PL, SMOc, TVB
72. E. sinaloensis Cruden Mexico Jal, Nay, Sin PL, TVB
73. E. skinneri (Baker) Cruden El Salvador La Libertad, Santa Ana CH, PL, VER
Guatemala AV
Honduras Chol
Mexico Chis
74. E. smithii Cruden Mexico Oax SMS
75. E. tamaulipensis Cruden Mexico Tamps TAMPS, VER
76. E. taxacana Cruden Mexico Gro, Mex, Mor, Oax BB, SMS, TVB
77. E. tenuifolia Cruden Mexico Oax BB, SMS
78. E. tenuis (Weath.) Cruden Mexico Gro, Mor, Oax BB, SMS, TVB
79. E. texensis Cruden USA Texas Grasslands
80. E. udipratensis Cruden Mexico Jal TVB
81. E. vaginata Cruden Mexico Oax BB, SMS
82. E. venusta Woodson Panama Chiriquí Puntarenas-Chiriquí
83. E. vestita (Baker) Cruden Guatemala Quiché BB, CH, CHIH, SMS,
Mexico Chis, Jal, Mich, Oax, Pue, Tlax, Ver TVB
84. E. weberbaueri (Poelln.) Cruden Peru Huan Rondônia, Yungas
85. E. williamsii Cruden El Salvador Ahua CH, PL, VER
Guatemala AV, BV, Chiq, Guat, Hue, Jala
Honduras Lem, Oco
Mexico Chis

Figure 2 Distribution of Echeandia. Each red point represents a record. 

With 74 species, Mexico had the highest species richness of Echeandia followed by Guatemala with 9, and then Honduras with 4. The USA, El Salvador, Venezuela, Colombia, and Peru had 3 species each. Two species were registered for both Belize and Panama while Nicaragua, Costa Rica, and Ecuador, each had 1 (Table 1). Within Mexico, the states of Oaxaca (31), Jalisco (24), and Guerrero (16) had the greatest number of species.

Latitudinally, Echeandia presented its greatest diversity between 17° and 21° N (Fig. 3A). The genus was markedly diverse at 97°, 99°, and 103° W (Fig. 3B). At one extreme, Echeandia campechiana Cruden, E. crudeniana Aarón Rodr., E. luteola Cruden, and E. texensis Cruden grew at sea level in Mexico and the USA. In contrast, E. herrerae (Killip) Cruden inhabited the highest elevational limit of the genus at 4,121 m, in Peru. In Central America, E. altipratensis Cruden reached 3,550 m, in Guatemala. Meanwhile, in Mexico E. durangensis (Greenm.) Cruden and E. longipedicellata Cruden were found at 3,300 m. However, most species were collected between 1,500 and 2,500 m of elevation (Fig. 3C).

Figure 3 Echeandia species richness by geographical criteria. A, Latitude; B, longitude; C, elevation. 

Echeandia was documented in 29 of the 70 biogeographic provinces of Latin America and in 5 out of 16 in the USA (Table 1). The spatial distribution was heterogeneous but concentrated in Mexico. The SMS had 39 species. The Pacific Lowlands (PL) and the TVB had 32, each. The Balsas Basin (BB), the Chihuahuan Desert (CHIH), and the SMOc, had 29, 18, and 15, respectively. Then, the CH and Veracruzan provinces had 12, each. Lastly, the SMOr recorded 11 species. Adding numbers up, the MTZ contained 61 species whereas the Neotropic and the Nearctic had 63 and 19 species, individually.

The grid analysis revealed 4 cells with high species richness (Fig. 4A). Cell 1 had 12 species and was located in the limits among Ciudad de México, Estado de México, and the state of Morelos. Cells 2, 3, and 4 contained 11 species each. Cell 2 occurred in the Oaxaca-Puebla state border, while cells 3 and 4 were situated in the confluence of the Central Valleys with the southern and northern mountains in Oaxaca (Fig. 4B). All cells with more than 3 species were in Mexico. In Central America, one cell in Guatemala had 3 species. El Salvador, Honduras, and Panama had cells with 2 species, while the rest of Central and all South America presented only 1 species per cell (Fig. 4A).

Figure 4 Species richness of Echeandia by a cell of 45 × 45 km. A, General analysis; B, close-up of central Mexico. 

Among countries, the number of endemic species was contrasting (Table 1). For Mexico, 63 were reported followed by Peru with 3. Ecuador, the USA, Guatemala, Panama, and Venezuela, each had 1. In Mexico, Oaxaca was the state with the highest number of endemic species, including Echeandia confertiflora Cruden, E. drepanoides (Greenm.) Cruden, E. grandiflora Cruden, E. hallbergii Cruden, E. llanicola Cruden, E. longifolia, E. montealbanensis Cruden, E. oaxacana Cruden, E. smithii Cruden, E. tenuifolia Cruden, and E. vaginata Cruden. Echeandia hintonii Cruden, E. magnifica López-Ferr., Espejo & Ceja, and E. pseudopetiolata Cruden grew only in Guerrero while E. jaliscensis Aarón Rodr. & Brunel, E. robusta Cruden, and E. udipratensis Cruden were found only in Jalisco (Table 1).

Based on biogeographic provinces, Echeandia hallbergii, E. llanicola, E. longifolia, E. pseudopetiolata, and E. smithii determined the SMS to be the province with the highest number of endemic species. Meanwhile, E. confertiflora, E. parva Cruden, and E. platyphylla (Greenm.) Cruden were endemic to the BB, while E. crudeniana, E. nayaritensis Cruden, and E. pihuamensis Cruden were exclusive to the PL. The TVB and the CH had 2 endemics each. Provinces with 1 endemic species included Grasslands, CHIH, SMOr, Yucatán Peninsula (YP), Puntarenas-Chiriquí, Pantepui, and Cauca (Table 1).

The WE analysis revealed 5 cells with the highest values (2.88 to 3.58), all located in Mexico. Cell 1 fell in Guerrero but cells 2, 3, 4, and 5 situated in Oaxaca. In Central and South America, the cell values varied from 0.01 to 1.44 (Fig. 5A). Cells with 1.45 to 2.15 values were identified in Ciudad de México, Jalisco, Estado de México, Morelos, Puebla, and Querétaro (Fig. 5B). Even though the CWE analysis revealed 5 cells with a value of 1, these had different distribution (Fig. 6). Cell 1 located in Mexico, cells 2 and 3 in Venezuela, cell 4 in Ecuador, and cell 5 in Peru. Cells with values between 0.6 and 0.8 were observed in Panama and Peru. Finally, Mexico, the USA, Guatemala, Colombia, and Peru hosted cells with 0.4 to 0.6 values.

Figure 5 Weighted endemism analysis. A, General analysis; B, close-up of central Mexico. 

Figure 6 Corrected weighted endemism analysis. 

Discussion

The database contained 2,078 records and out of these, we georeferenced 966 of them (46.5%). Even though several publications failed to state how or if the data were georeferenced, this proportion compares with similar analyses. For instance, Munguía-Lino et al. (2015) georeferenced 47% of the occurrence points in the tribe Tigridieae (Iridaceae) of North America and Carrasco-Ortiz et al. (2019) did the same for 61% of the records in Dahlia (Asteraceae). In Sedum (Crassulaceae) from the Sierra Madre del Sur (Mexico), Aragón-Parada et al. (2019) georeferenced 91% of the geographical data. The confidence of our results depended on the taxonomic identification and the quality of geographic coordinates included the estimated ones. We followed the SAGA protocol and according with Bloom et al. (2017), this method outpaced any other georeferencing scheme.

In biogeography, the uneven distribution of species richness makes a striking pattern. Even though political divisions do not have a biological significance, they are important for conservation decisions (Whittaker et al., 2005). Mexico is the center of diversification of many lineages of Agavoideae such as Agave L. sensu stricto, Manfreda Salisb., Polianthes L., and Yucca L. (Castro-Castro et al., 2016; Castro-Castro et al., 2018; García-Mendoza, 2002; García-Mendoza, 2011; Good-Avila et al., 2006; Jiménez-Barron et al., 2020). The highest species richness of Agavoideae is concentrated in Jalisco and Oaxaca (Castro-Castro, 2017; García-Mendoza, 2004). Echeandia followed a similar pattern.

As botanical exploration continues in Mexico, the number of species increases, including those in Echeandia. Espejo-Serna and López-Ferrari (1993) report 51 species and Cruden (2009) lists 59. Rodríguez and Ortiz-Catedral (2013) mention 69, while Villaseñor (2016) indicates the presence of 68 species. We have documented 74 species, adding the presence of E. altipratensis, E. petenensis Cruden, and E. williamsii Cruden within the Mexican territory. Also, we have included the recently described E. jaliscensis (Rodríguez & Ortiz-Brunel, 2019). Most likely, future botanical exploration will lead into the discovery of new species for the genus.

Plant species richness increases towards the equator. However, within the tropics, mountainous zones show the highest values (Barthlott et al., 2005; Ulloa-Ulloa et al., 2017). The spatial distribution of Echeandia coincided with these patterns. Echeandia species richness concentrated between 17° and 21° N and from 1,500 to 2,500 m of elevation. These ranges corresponded to the highlands of Oaxaca, Estado de México, and Morelos. The latitudinal and elevational patterns of Echeandia were similar to those of tribe Tigridieae (Iridaceae) (Munguía-Lino et al., 2015) and Solanum section Petota (Solanaceae) (Hijmans & Spooner, 2001). Also, Echeandia was markedly diverse at 97°, 99°, and 103° W, which corresponded to some areas of the SMS and the TVB. Latitudinal and elevational ranges with more species of Echeandia corresponded to the range of the pine-oak forest. Villaseñor and Ortiz (2014) identify this vegetation type as home of the largest angiosperm diversity in Mexico.

The highest diversity of Echeandia was concentrated along the MTZ, particularly in the SMS and TVB. Conversely, geophyte monocotyledons have their highest diversity along the TVB and the SMS (Cuéllar-Martínez & Sosa, 2016). Dahlia (Carrasco-Ortiz et al., 2019) and Echeandia shared the same area of species richness in the SMS. Additionally, we identified another pattern of Echeandia species richness.

Several species of Echeandia were located at the limits of the MTZ and the Neotropical region. These areas located between the pine-oak forest and the tropical deciduous forest. For example, E. conzattii Cruden, E. echeandioides (Schltdl.) Cruden, E. elegans Cruden, E. hintonii, E. hirticaulis Cruden, E. magnifica, E. mexiae Cruden, E. mirandae Cruden, E. taxacana Cruden, E. tenuifolia, E. tenuis (Weath.) Cruden, and E. vaginata occurred in the boundaries between the TVB or the SMS and the BB. The other case was observed along the PL. This province extends from southern Sonora to Nicaragua and has the widest latitudinal range (Morrone, 2014). At some points, it converges with the SMOc, the TVB, the SMS, and the CH. The distribution of E. attenuata Cruden, E. gentryi Cruden, E. grandiflora, E. mcvaughii Cruden, E. parvicapsulata Cruden, E. robusta, and E. sinaloensis Cruden included the PL and the MTZ. This evidence explains the high number of species observed in the PL and the BB.

A similar pattern was identified along the boundaries between the MTZ and the Nearctic region. The CHIH registered 18 species (Table 1). The distribution of some species of the SMOc, the SMOr, and the TVB extended to the vicinity of the CHIH. In other words, species of the temperate forest in the MTZ stretched their distribution to the mountains with dry conditions of the CHIH. This pattern was not observed with other provinces of the Nearctic. The Tamaulipas and the Sonoran Desert provinces have contact with the SMOr and the SMOc, respectively. However, only 4 and 1 species were registered for each province. Plains and low sierras with mesquite-grassland and desert cover both provinces (Ferrusquía-Villafranca, 1993; Leopold, 1950; Phillips & Wentworth, 2000; Rzedowski, 1986). It has been observed that topographic complex areas show a higher biodiversity in comparison with adjacent lowlands (Badgley et al., 2017). Echeandia had low species richness in provinces with lowlands covered by mesquite-grassland and desert.

The geographical distribution of Echeandia included the MTZ, the South American Transition Zone (STZ), the Neotropic, and the Nearctic. With 63 species, the Neotropic had the highest number of species but its territorial extension is also several times larger than the MTZ. Furthermore, most species registered in the Neotropic were recorded in the provinces situated next to the MTZ in Mexico. With some exceptions, Darlington (1957) says that transition zones have poor biodiversity. At the STZ and with 2 species recorded, Echeandia supports his observation, but the MTZ represents the contrary. Good-Avila et al. (2006) show evidence for a sister group relationship between the Anthericeae and Agavaceae clades. They separated from each other about 30 to 35 Mya. Further, Agave sensu lato originated 8-10 Mya. Within Agave sensu lato, Jiménez-Barron et al. (2020) show data supporting 2 recent diversification events at 2.68 and 6.18 Mya. Both Agave s.l. and Echeandia have a similar pattern of species richness distribution. It follows that Mexico represents the center of origin and diversification of Echeandia with a subsequent dispersal to the south. This observations could explain the low species richness in Central and South America but needs further evaluation based on a robust phylogenetic hypothesis.

With 12 species, the richest cell was located at the point where the state borders of Morelos, Estado de México, and Ciudad de México coincide. This pattern was very similar to those of the Mexican geophytes (Sosa & Loera, 2017) and the tribe Tigridieae (Munguía-Lino et al., 2015). Two cells, with 11 species each, were situated in Oaxaca at the limits between the SMS and the BB, similar to the case of Dahlia (Carrasco-Ortiz et al., 2019). Three out of 4 cells with the highest species richness were located in the MTZ but included portions of the BB. The remaining cell fell mostly in the BB but overlapped a little with the SMS (Fig. 7). This implies the presence of the tropical deciduous forest and the pine-oak forest in the 4 cells. The convergence of 2 biogeographic provinces and therefore, of 2 vegetation types, could explain the high number of species in these cells.

Figure 7 Comparison of the species richness by biogeographical regions. A, Nearctic; B, Mexican Transition Zone; C, Neotropical. Abbreviations: BB, Balsas Basin; BC, Baja Californian; C, Californian; CH, Chiapas Highlands; CHIH, Chihuahuan Desert; PL, Pacific Lowlands; SMOc, Sierra Madre Occidental; SMOr, Sierra Madre Oriental; SMS, Sierra Madre del Sur; SON, Sonoran; TAMPS, Tamaulipas; TVB, Transmexican Volcanic Belt; VER, Veracruzan; YP, Yucatán Peninsula. 

The endemic vascular flora of Mexico varies from 49.8% (Villaseñor, 2016) to 52.5% (Ulloa-Ulloa et al., 2017). Espejo-Serna (2012) estimates that 84.6% of the species of Echeandia are endemic to the country, which coincides with the 85.1% obtained in this work. Both estimates are greater than the global Mexican values. Therefore, Echeandia is a good surrogate of the endemic flora of Mexico.

The highest species richness and endemism of Echeandia were concentrated in the SMS. It had 39 species and 5 of them were endemic to the province. It also held the 5 cells with the highest values recovered by the WE analysis (Fig. 5, Table 2). However, endemism in the SMS was unevenly distributed. Based on endemism patterns, the SMS is divided in 3 subprovinces and 5 districts (Santiago-Alvarado et al., 2016; Morrone, 2017). The endemism of Echeandia was greater in the Eastern Sierra Madre del Sur subprovince. Cell 1 located in Guerrero and E. pseudopetiolata defined it. This zone was previously identified as the Sierra Madre del Sur Guerrerense district (Santiago-Alvarado et al., 2016). The 4 remaining cells occurred in Oaxaca, all of them in the Sierra Madre del Sur Oaxaqueña district (Santiago-Alvarado et al., 2016). Echeandia confertiflora defined cell 2 while E. llanicola was restricted to the cell 4. Cells 3 and 5 had no strict endemics but the species contributing to their values are listed in Table 2. These cells of Oaxaca were identified as endemism areas by Rodríguez et al. (2018) and Aragón-Parada et al. (2019).

Table 2 Species in the highest valued cells of the weighted endemism analysis. 

Cell Present Endemic
1 Echeandia hintonii, E. magnifica, E. parviflora, E. pseudopetiolata, E. taxacana E. pseudopetiolata
2 Echeandia confertiflora, E. echeandioides, E. mexiae, E. mexicana, E. montealbanensis, E. parva, E. parviflora, E. reflexa, E. taxacana, E. tenuifolia, E. vestita E. confertiflora
3 Echeandia conzatti, E. echeandioides, E. hallbergii, E. mexicana, E. smithii, E. vaginata, E. vestita
4 Echeandia drepanoides, E. echeandioides, E. formosa, E. hallbergii, E. llanicola, E. longipedicellata, E. matudae, E. mexicana, E. montealbanensis, E. smithii, E. vestita E. llanicola
5 Echeandia drepanoides, E. echeandioides, E. flavescens, E. hallbergii, E. matudae, E. montealbanensis, E. parviflora, E. reflexa, E. smithii, E. vaginata, E. vestita

Correspondingly, the CWE recovered 5 cells with a value of 1 and a single strict endemic (Fig. 6). Cell 1 placed in Mexico and was defined by the presence of Echeandia crudeniana, known only from the type locality in Punta Mita Peninsula, Bahía de Banderas, Nayarit (Rodríguez & Ortiz-Catedral, 2013). The other 4 cells pertained to South America. Cells 2 and 3 situated in Venezuela and E. bolivarensis Cruden supported them. Ecuador housed cell 4 with E. lehmannii (Baker) Marais & Reilly. Last of all, Peru had cell 5 and E. weberbaueri (Poelln.) Cruden defined it. Micro-endemic species are common in Echeandia (Cruden, 2009) and our results confirmed this observation. Since, in South America they were geographically isolated from other species.

Monocot geophyte diversification and distribution are correlated with wide temperature ranges and precipitation seasonality (Cuéllar-Martínez & Sosa, 2016; Sosa & Loera, 2017; Howard et al., 2019). The MTZ includes the major mountain chains in Mexico and has a complex tectonic and volcanic history (Mastretta-Yanes et al., 2015). It also shows temperature gradients and rain seasonality. Such topographic and climatic diversity promotes speciation, accumulation of species via dispersal, persistence and endemism. Overall, angiosperm spatial richness distribution and endemism patterns fall along the MTZ (Cruz-Cárdenas et al., 2013; Rodríguez et al., 2018; Sosa & De-Nova, 2012). And particularly, Echeandia fits perfectly in this scenario. We hope this species rich genus will promote botanical exploration leading to the discovery of novelties and contributes to build up a strategy for the species conservation of the genus in situ and ex situ.

Acknowledgments

We thank the Consejo Nacional de Ciencia y Tecnología (Conacyt). Also, we are grateful to the curators of the herbaria of BRIT, CICY, CIIDIR, HGOM, IEB, MEXU, SLPM, UAT, UAMIZ, XAL, and ZEA for the facilities provided. Thanks to Mollie Harker for reviewing the final version of this manuscript and for her valuable observations. Finally, we are grateful with Leticia Hernández and Eduardo Ruiz Sánchez, whose observations were very useful in the development of this project.

References

Alcántara, O., & Paniagua, M. (2007). Patrones de distribución y conservación de plantas endémicas. In I. Luna, J. J. Morrone, & D. Espinosa (Eds.), Biodiversidad de la Faja Volcánica Transmexicana (pp. 421-438). México D.F.: Universidad Nacional Autónoma de México. https://doi.org/10.22201/ib.20078706e.2012.1.786 [ Links ]

APG IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20. https://doi.org/10.1111/boj.12385 [ Links ]

Aragón-Parada, J., Carrillo-Reyes, P., Rodríguez, A., & Munguía-Lino, G. (2019). Diversidad y distribución geográfica del género Sedum (Crassulaceae) en la Sierra Madre del Sur, México. Revista Mexicana de Biodiversidad, 90, e902921. https://doi.org/10.22201/ib.20078706e.2019.90.2921 [ Links ]

Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L. et al. (2017). Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends in Ecology & Evolution, 32, 211-226. https://doi.org/10.1016/j.tree.2016.12.010 [ Links ]

Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G., & Kreft, H. (2005). Global centers of vascular plant diversity. Nova Acta Leopoldina NF, 92, 61-83. https://doi.org/10.3112/erdkunde.2007.04.01 [ Links ]

Bloom, T. D. S., Flower, A., & DeChaine, E. G. (2017). Why georeferencing matters: introducing a practical protocol to prepare species ocurrence records for spatial analysis. Ecology and Evolution, 8, 765-777. https://doi.org/10.1002/ece3.3516 [ Links ]

Bogler, D. J., Pires, J. C., & Francisco-Ortega, J. (2006). Phylogeny of Agavaceae based on ndhF, rbcL, and ITS sequences: implications of molecular data for classification. Aliso, 22, 313-328. https://doi.org/10.5642/aliso.20062201.26 [ Links ]

Brummitt, R. K. (2001). World geographical scheme for recording plant distributions . Edition 2. Pittsburgh, USA: Hunt Institute for Botanical Documentation, Carnegie Mellon University. Available online at: http://www.tdwg.org/standards/109Links ]

Carrasco-Ortiz, M., Munguía-Lino, G., Castro-Castro, A., Vargas-Amado, G., Harker, M., & Rodríguez, A. (2019). Riqueza, distribución geográfica y estado de conservación del género Dahlia (Asteraceae) en México. Acta Botanica Mexicana, 126, 1-24. https://doi.org/10.21829/abm126.2019.1354 [ Links ]

Castro-Castro, A. (2017). Los amoles, izotes, magueyes, nardos y yucas (familia Agavaceae). In A. A. Cruz, H. A. Ordorica, P. J. Valero, & E. D. Melgarejo (Eds.), La biodiversidad en Jalisco estudio de estado . Volumen 2 (pp. 135-141). Guadalajara, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad/Secretaría de Medio Ambiente y Desarrollo Territorial. Available online at: https://bioteca.biodiversidad.gob.mx/janium-bin/sumario.pl?Id=20210113135429Links ]

Castro-Castro, A., Flores-Argüelles, A., Hernández-López, L., & Rodríguez, A. (2016). Polianthes quilae (Poliantheae, Agavaceae), a new and endemic species to western Mexico. Systematic Botany, 41, 720-726. https://doi.org/10.1600/036364416x692316 [ Links ]

Castro-Castro, A., Zamora-Tavares, P., Carrillo-Reyes, P., & Rodríguez, A. (2018). Manfreda santana-michelii (Asparagaceae subfamily Agavoideae), a striking new species from Sierra Madre del Sur in western Mexico. Systematic Botany, 43, 497-501. https://doi.org/10.1600/036364418x697229 [ Links ]

Chase, M. W., Reveal, J. L., & Fay, M. F. (2009). A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161, 132-136. https://doi.org/10.1111/j.1095-8339.2009.00999.x [ Links ]

Chen, S., Kim, D. K., Chase, M. W., & Kim, J. H. (2013). Networks in a large-scale phylogenetic analysis: reconstructing evolutionary history of Asparagales (Lilianae) based on four plastid genes. Plos One, 8, e59472. https://doi.org/10.1371/journal.pone.0059472 [ Links ]

Cruden, R. W. (1981). New Echeandia (Liliaceae) from Mexico. Sida, 9, 139-146. [ Links ]

Cruden, R. W. (1986). New species of Echeandia (Liliaceae) from Central America. Phytologia, 59, 373-380. https://doi.org/10.5962/bhl.part.2772 [ Links ]

Cruden, R. W. (1987). New species of Echeandia (Liliaceae) from Nueva Galicia. Contributions of the University of Michigan Herbarium, 16, 129-133. [ Links ]

Cruden, R. W. (1989). A new Echeandia (Liliaceae) from Venezuelan Guayana. Annals of the Missouri Botanical Garden, 76, 350. https://doi.org/10.2307/2399352 [ Links ]

Cruden, R. W. (1993). New species of Echeandia (Liliaceae) from Oaxaca, Mexico. Phytologia, 74, 128-137. [ Links ]

Cruden, R. W. (1994). Echeandia. In G. Davidse, M. Sousa, & A. O. Chater (Eds.), Flora Mesoamericana 6: Alismataceae a Cyperaceae (pp. 27-30). México D.F.: Instituto de Biología, Universidad Nacional Autónoma de México. [ Links ]

Cruden, R. W. (1999). A new subgenus and fifteen new species of Echeandia (Anthericaceae) from Mexico and the United States. Novon, 9, 325-338. https://doi.org/10.2307/3391730 [ Links ]

Cruden, R. W. (2009). A synopsis of South American Echeandia (Anthericaceae). Annals of the Missouri Botanical Garden, 96, 251-267. https://doi.org/10.3417/2002129 [ Links ]

Cruden, R. W., & McVaugh, R. (1989). Echeandia. In W. R. Anderson (Ed.), Flora Novo-Galiciana: a descriptive account of the vascular plants of western Mexico . Volume 15: Bromeliaceae to Dioscoreaceae (pp. 178-197). Ann Arbor, Michigan: The University of Michigan Herbarium. [ Links ]

Cruz-Cárdenas, G., Villaseñor, J. L., López-Mata, L., & Ortiz, E. (2013). Distribución espacial de la riqueza de especies de plantas vasculares en México. Revista Mexicana de Biodiversidad, 84, 1189-1199. https://doi.org/10.7550/rmb.31811 [ Links ]

Cuéllar-Martínez, M., & Sosa, V. (2016). Diversity patterns of monocotyledonous geophytes in Mexico. Botanical Sciences, 94, 687-699. https://doi.org/10.17129/botsci.763 [ Links ]

Darlington, P. J. (1957). Zoogeography: the geographical distribution of animals. New York: John Wiley & Sons, Inc. [ Links ]

Delgado-Salinas, A., Bibler, R., & Lavin, M. (2006). Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Systematic Botany, 31, 779-791. https://doi.org/10.1600/036364406779695960 [ Links ]

Espejo-Serna, A. (2012). El endemismo en las Liliopsida mexicanas. Acta Botanica Mexicana, 100, 195-257. https://doi.org/10.21829/abm100.2012.36 [ Links ]

Espejo-Serna, A., & López-Ferrari, A. R. (1993). Las monocotiledóneas mexicanas: una sinopsis florística. Lista de referencia II: Anthericaceae, Araceae, Arecaceae, Asparagaceae, Asphodelaceae y Asteliaceae. México D.F.: Consejo Nacional de la Flora de México/ Universidad Autónoma Metropolitana-Iztapalapa/ Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. [ Links ]

Ferrusquía-Villafranca, I. (1993). Geology of Mexico: a synopsis. In T. P. Ramamoorthy, R. Bye, A. Lot, & J. Fa (Eds.), Biological diversity of Mexico: origins and distribution (pp. 3-107). New York: Oxford University Press. [ Links ]

García-Mendoza, A. (2002). Distribution of Agave (Agavaceae) in Mexico. Cactus and Succulent Journal, 74, 177-188. [ Links ]

García-Mendoza, A. (2004). Agaváceas. In A. García-Mendoza, J. Ordoñez, & M. Briones-Salas (Eds.), Biodiversidad en Oaxaca (pp. 159-170). Ciudad de México: Universidad Nacional Autónoma de México. [ Links ]

García-Mendoza, A. (2011). Agavaceae. Flora del Valle de Tehuacán-Cuicatlán. Fascículo 88. México D.F.: Instituto de Biología, Universidad Nacional Autónoma de México. [ Links ]

GBIF (2018). Global Biodiversity Information Facility. Available online at: https://www.gbif.org/Links ]

Gernandt, D. S., & Pérez-de la Rosa, J. A. (2014). Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad, 85 Supl., S126-S133. https://doi.org/10.7550/rmb.32195 [ Links ]

Google. 2018. Google Earth Pro Software 4.2. Available online at: https://www.google.com/intl/es-419/earth/Links ]

Good-Avila, S. V., Souza, V., Gaut, B. S., & Eguiarte, L. E. (2006). Timing and rate of speciation in Agave (Agavaceae). Proceedings of the National Academy of Sciences, 103, 9124-9129. https://doi.org/10.1073/pnas.0603312103 [ Links ]

Gutiérrez-Ortega, J. S., Salinas-Rodríguez, M. M., Martínez, J. F., Molina-Freaner, F., Pérez-Farrera, M. A., Vovides, A. P. et al. (2018). The phylogeography of the cycad genus Dioon (Zamiaceae) clarifies its Cenozoic expansion and diversification in the Mexican transition zone. Annals of Botany, 121, 535-548. https://doi.org/10.1093/aob/mcx165 [ Links ]

Halffter, G. (1964). La entomofauna americana, ideas acerca de su origen y distribución. Folia Entomológica Mexicana, 6, 1-108. [ Links ]

Hijmans, R. J., & Spooner, D. M. (2001). Geographic distribution of wild potato species. American Journal of Botany, 88, 2101-2112. https://doi.org/10.2307/3558435 [ Links ]

Hijmans, R. J., Guarino, L., Bussink, C., Mathur, P., Cruz, M., Berrantes, I. et al. (2004). DIVA-GIS versión 4. Un sistema de información geográfica para el análisis de distribución de especies: Manual. Lima, Perú: Centro Internacional de la Papa, Instituto Internacional de Recursos Genéticos Vegetales. [ Links ]

Hipp, A. L., Manos, P. S., González-Rodríguez, A., Hahn, M., Kaproth, M., McVay, J. D. et al. (2018). Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist, 217, 439-452. https://doi.org/10.1111/nph.14773 [ Links ]

Howard, C. C., Folk, R. A., Beaulieu, J. M., & Cellinese, N. (2019). The monocotyledonous underground: global climatic and phylogenetic patterns of geophyte diversity. American Journal of Botany, 106, 1-14. https://doi.org/10.1002/ajb2.1289 [ Links ]

INEGI. (2010). Archivo histórico de localidades geoestadísticas. Available online at: https://www.inegi.org.mx/Links ]

Jiménez-Barron, O., García-Sandoval, R., Magallón, S., García-Mendoza, A., Nieto-Sotelo, J., Aguirre-Planter, E. et al. (2020). Phylogeny, diversification rate, and divergence time of Agave sensu lato (Asparagaceae), a group of recent origin in the process of diversification. Frontiers in Plant Science, 11, 1-17. https://doi.org/10.3389/fpls.2020.536135 [ Links ]

Laffan, S. W., & Crisp, M. D. (2003). Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. Journal of Biogeography, 30, 511-520. https://doi.org/10.1046/j.1365-2699.2003.00875.x [ Links ]

Laffan, S. W., Lubarsky, E., & Rosauer, D. F. (2010). Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography, 33, 643-647. [ Links ]

Leopold, A. S. (1950). Vegetation zones of Mexico. Ecology, 33, 507-518. https://www.jstor.org/stable/1931569Links ]

López-Ferrari, A. R., & Espejo-Serna, A. (1995). Anthericaceae. Flora de Veracruz: Fascículo 86. Xalapa, Veracruz: Instituto de Ecología, A.C. [ Links ]

López-Ferrari, A. R., Espejo-Serna, A., & Ceja-Romero, J. (2002). Una nueva especie de Echeandia (Anthericaceae) de Guerrero, México. Novon, 12, 77-79. https://doi.org/10.2307/3393242 [ Links ]

Mastretta-Yanes, A., Moreno-Letelier, A., Piñero, D., Jorgensen, T. H., & Emerson, B. C. (2015). Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography, 42, 1586-1600. https://doi.org/10.1111/jbi.12546 [ Links ]

McKain, M. R., McNeal, J. R., Kellar, P. R., Eguiarte, L. E., Pires, J. C., & Leebens-Mack, J. (2016). Timing of rapid diversification and convergent origins of active pollination within Agavoideae (Asparagaceae). American Journal of Botany, 103, 1717-1729. https://doi.org/10.3732/ajb.1600198 [ Links ]

Morrone, J. J. (2014). Biogeographical regionalization of the Neotropical region. Zootaxa, 3782, 4-110. https://doi.org/10.11646/zootaxa.3782.1.1 [ Links ]

Morrone, J. J. (2017). Biogeographic regionalization of the Sierra Madre del Sur province, Mexico. Revista Mexicana de Biodiversidad, 88, 710-714. https://doi.org/10.1016/j.rmb.2017.07.012 [ Links ]

Morrone, J. J., Escalante, T., & Rodríguez-Tapia, G. (2017). Mexican biogeographic provinces: map and shapefiles. Zootaxa, 4277, 277-279. https://doi.org/10.11646/zootaxa.4277.2.8 [ Links ]

Munguía-Lino, G., Vargas-Amado, G., Vázquez-García, L. M., & Rodríguez, A. (2015). Riqueza y distribución geográfica de la tribu Tigridieae (Iridaceae) en Norteamérica. Revista Mexicana de Biodiversidad, 86, 80-98. https://doi.org/10.7550/rmb.44083 [ Links ]

Phillips, S. J., & Wentworth, P. (2000). A natural history of the Sonoran Desert. Tucson: Arizona-Sonora Desert Museum Press. [ Links ]

Pires, J. C., Maureira, I., Givnish, T. J., Sytsma, K. J., Seberg, O., Petersen, G. et al. (2006). Phylogeny, genome size, and chromosome evolution of Asparagales. Aliso, 22, 287-304. https://doi.org/10.5642/aliso.20062201.24 [ Links ]

QGIS Development Team. (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online at: https://www.qgis.org/Links ]

Rodríguez, A., & Castro-Castro, A. (2005). Notas sobre Echeandia pihuamensis, E. robusta y E. sinaloensis y estado de conservación de las especies mexicanas. Ibugana, 13, 3-9. [ Links ]

Rodríguez, A., & Ortiz-Catedral, L. (2013). Echeandia novogaliciana and E. crudeniana (Anthericaceae): two new species from western Mexico. Brittonia, 65, 345-350. https://doi.org/10.1007/s12228-012-9293-6 [ Links ]

Rodríguez, A., Castro-Castro, A., Vargas-Amado, G., Vargas-Ponce, O., Zamora-Tavares, P., González-Gallegos, J. et al. (2018). Richness, geographic distribution patterns, and areas of endemism of selected angiosperm groups in Mexico. Journal of Systematics and Evolution, 56, 537-549. https://doi.org/10.1111/jse.12457 [ Links ]

Rodríguez, A., & Ortiz-Brunel, J. P. (2019). Echeandia jaliscensis (Asparagaceae) a new species from Jalisco, Mexico. Phytotaxa, 414, 29-34. https://doi.org/10.11646/phytotaxa.414.1.3 [ Links ]

Rzedowski, J. (1986). Vegetación de México. México D.F.: Limusa. [ Links ]

Rzedowski, J. (2019). Los géneros de fanerógamas que, sin ser exclusivos de México, dan carácter a su flora. Revista Mexicana de Biodiversidad, 90, e902946. http://dx.doi.org/10.22201/ib.20078706e.2019.90.2946 [ Links ]

Salinas-Rodríguez, M. M., Estrada-Castillón, E., & Villarreal-Quintanilla, J. A. (2017). Endemic vascular plants of the Sierra Madre Oriental, Mexico. Phytotaxa, 328, 1-52. https://doi.org/10.11646/phytotaxa.328.1.1 [ Links ]

Sánchez-Chávez, E., Rodríguez, A., Castro-Castro, A., Pérez-Farrera, M. A., & Sosa, V. (2019). Spatio-temporal evolution of climbing habit in the Dahlia-Hidalgoa group (Coreopsidae, Asteraceae). Molecular Phylogenetics and Evolution, 135, 166-176. https://doi.org/10.1016/j.ympev.2019.03.012 [ Links ]

Santiago-Alvarado, M., Montaño-Arias, G., & Espinosa, D. (2016). Áreas de endemismo de la Sierra Madre del Sur. In I. Luna-Vega, D. Espinosa, & R. Contreras-Medina (Eds.), Biodiversidad de la Sierra Madre del Sur (pp. 431-448). México D.F.: Universidad Nacional Autónoma de México. [ Links ]

Sosa, V., & De-Nova, J. A. (2012). Endemic angiosperm lineages in Mexico: hotspots for conservation. Acta Botanica Mexicana, 100, 293-315. https://doi.org/10.21829/abm100.2012.38 [ Links ]

Sosa, V., Cameron, K. M., Angulo, D. F., & Hernández-Hernández, T. (2016). Life form evolution in epidendroid orchids: ecological consequences of the shift from epiphytism to terrestrial habits in Hexalectris. Taxon, 65, 235-248. https://doi.org/10.12705/652.2 [ Links ]

Sosa, V., & Loera, I. (2017). Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants. PeerJ, 5, e3932. https://doi:10.7717/peerj.3932 [ Links ]

Suárez-Mota, M. E., & Villaseñor, J. L. (2011). Las compuestas endémicas de Oaxaca, México: diversidad y distribución. Boletín de la Sociedad Botánica de México, 88, 55-66. https://doi.org/10.17129/botsci.308 [ Links ]

Thiers, B. (2020). Index Herbariorum: a global directory of public herbaria an associated staff. New York Botanical Garden´s Virtual Herbarium. Available online at: http://sweetgum.nybg.org/ih/Links ]

Torres-Miranda, A., Luna-Vega, I., & Oyama, K. (2013). New approaches to the biogeography and areas of endemism of red oaks (Quercus L., Section Lobatae). Systematic Biology, 62, 555-573. https://doi.org/10.1093/sysbio/syt021 [ Links ]

Udvardy, M. D. F. (1975). A classification of the biogeographical provinces of the world. IUCN Occasional Paper, 18, 5-46. https://doi.org/10.1017/s0376892900019226 [ Links ]

Ulloa-Ulloa, C., Acevedo-Rodríguez, P., Beck, S., Belgrano, M. J., Bernal, R., Berry, P. E. et al. (2017). An integrated assessment of the vascular plant species of the Americas. Science, 358, 1614-1617. https://doi.org/10.1126/science. aao039 [ Links ]

Vargas-Amado, G., Castro-Castro, A., Harker, M., Villaseñor, J. L., Ortiz, E., & Rodríguez, A. (2013). Distribución geográfica y riqueza del género Cosmos (Asteraceae: Coreopsideae). Revista Mexicana de Biodiversidad, 84, 536-555. http://dx.doi.org/10.7550/rmb.31481 [ Links ]

Villaseñor, J. L. (2016). Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad, 87, 559-902. https://doi.org/10.1016/j.rmb.2016.06.017 [ Links ]

Villaseñor, J. L., & Ortiz, E. (2007). La familia Asteraceae. In I. Luna, J. J. Morrone, & D. Espinosa (Eds.), Biodiversidad de la Faja Volcánica Transmexicana (pp. 289-310). México D.F.: Universidad Nacional Autónoma de México. [ Links ]

Villaseñor, J. L., & Ortiz, E. (2014). Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad, 85, 134-142. http://dx.doi.org/10.7550/rmb.31987 [ Links ]

Wallace, A. R. (1876). The geographical distribution of animals . Vol. I y II. New York: Harper and Brothers. [ Links ]

Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., & Willis, K. J. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, 3-23. https://doi.org/10.1111/j.1366-9516.2005.00143.x [ Links ]

Willis, F., Moat, J., & Paton, A. (2003). Defining a role for herbarium data in Red List assessments: a case study of Plectranthus from eastern and southern tropical Africa. Biodiversity and Conservation, 12, 1537-1552. https://doi.org/10.1023/A:1023679329093 [ Links ]

Received: September 06, 2020; Accepted: January 13, 2021

* Corresponding author: aaron.rodriguez@academicos.udg.mx (A. Rodríguez)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License