SciELO - Scientific Electronic Library Online

vol.4 número1Wire Board prototyping method índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.4 no.1 Ciudad de México Abr. 2006


Breakdown of scaling properties in abnormal heart rate variability


Rodríguez, E.1, de Luca2, A., Meraz, M.1, & Alvarez-Ramirez, J.1


División de Ciencia Básica e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa, Apartado Postal 55-534 Iztapalapa D.F. 09340 México. E-mail

1 Departamento de Biotecnología.

2 Sec. de Computación Ingeniería Eléctrica Cinvestav - IPN.


Received: November 24th, 2005.
Accepted: December 3th, 2005.



The heart rate variability (HRV) of subjects with normal sinus rhythm (NSR) and subjects with congestive heart failure (CHF) is compared by using a structure function borrowed from turbulence studies. Firstly, it is shown that the HRV of subjects with NSR displays a power law scaling property, which indicates the presence of structured heartbeat control mechanisms. Secondly, it is found that such a scaling property is partially lost for subjects with CHF. The absence of scaling properties is associated to the presence of uncorrelated (i.e., noise-like) heart rate variations. In order to gain insights on the source of the scaling property, the HRV is analyzed from a systemic (i.e., feedback control) viewpoint in the frequency domain. It is found that the HRV of subjects with NSR is governed by a stable adaptive control mechanism presumably located in the autonomic nervous system. In the case of subjects with CHF, the results show that this regulation mechanism is partially or totally absent, which is interpreted as the cause of the breakdown of the scaling law property.

Keywords: Heart Rate Variability; Scaling Properties, Breakdown; Frequency Response.





[1] M.N. Levy and P.J. Schwartz, Vagal Control of the Heart: Experimental Basis and Clinical Implications. Armonk, NY: Futura; 1994.         [ Links ]

[2] Special Report. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93 (1996) 1043-1065.         [ Links ]

[3] M. Teich, S. Lowen, B. Jost, K. K. Vibe-Rheymer, C. Heneghan, Heart rateariability:measures and models, in: M. Akay (ed), Nonlinear Biomedical Signal Processing, vol II, Dynamic Analysis and Modeling, IEEE Press, New York, 2001.         [ Links ]

[4] J. Jalife and D.C. Michaels, Neural control of sinoatrial pacemaker activity. In: Levy MN, Schwartz, PJ, eds. Vagal Control of the Heart: Experimental Basis and Clinical Implications. Armonk, NY: Futura (1994) 173-205.         [ Links ]

[5] P.J. Schwartz, S.G.Priori, Sympathetic nervous system and cardiac arrhythmias, In: D.F. Zipes, J jalibe eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia. Pa: WB Saunders Co., (1990) 330-343.         [ Links ]

[6] P.Ch. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stanley and A.L. Goldberger, Sleep-wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term spave flight data, Europhysics Letters, 48 (1999a) 694-600.         [ Links ]

[7] C.-K. Peng, J. Mietus, J.M. Hausdorf, S. Havlin, H.E. Stanley, A.L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett., 70 (1993) 13-43.         [ Links ]

[8] S. Havlin, L.A.N. Amaral, Y. Ashkenazy, A.L. Golberger, P. Ch. Ivanow, C.-K Peng, H.E. Stanley, Application of statistical physics to heartbeat diagnosis, Physica A, 274 (1999) 99.         [ Links ]

[9] P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Multifractality in human heartbeat dynamics, Nature, 399 (1999b) 461.         [ Links ]

[10] Y. Ashkenazy, P.Ch. Ivanov, Sh. Havlin, Ch.-K. Peng, A.L. Goldberger and H.E. Stanley, Magnitude and sign correlations in heartbeat fluctuations, Physics Review Letters, 86 (2001) 1900-1903.         [ Links ]

[11] D.C. Lin and R.L. Hughson, Modeling heart rate variability in healthy humans: A turbulence analogy, Physics Review Letters, 86 (2001 ) 1650-1653.         [ Links ]

[12] D.C. Lin, Robustness and perturbation in the modeled cascade heart rate variability, Physical Review E, 67 (2003) 031914-1-031914-8.         [ Links ]

[13] A. Dudkowska and D. Makowiec, Sleep and wake phase of heart beat dynamics by artificial insymmetrised patterns, Physica A, (2004) in press.         [ Links ]

[14] M. Sakki, J. Kalda, M. Vainu and M. Laan, The distribution of law variability periods in human heartbeat dynamics, Physica A, (2004) in press.         [ Links ]

[15] G. Imponente, Complex dynamics of the biological rhythms: gallbladder and and heart cases, Physica A, (2004) in press.         [ Links ]

[16] J. Feder, Fractals, Plenum Press, New York, 1988.         [ Links ]

[17] M. Morari and E. Zafiriou, Robust Process Control, Prentice-Hall, New York, 1989.         [ Links ]

[18] K. Ogata, Modern Control Engineering, 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.         [ Links ]

[19] J.T. Ottesen, Modeling of the baroreflex-feedback mechanism with time-delay, J. Math. Biol., 36 (1997) 41-63.         [ Links ]

[20] T.-M. Yi, Y. Huang, M.I. Simon and and J. Doyle, Robust perfect adaptation in bacterial temotaxis through integral feedback control, Proceeding National Academy of Sciences, 97 (2000) 4649-5653.         [ Links ]

[21] A.-L. Barabasi and T. Vicsek, Multifractality of self-affine fractals, Physical Review E, 44 (1991) 2730-2733.         [ Links ]

[22] A.-L. Barabasi, P. Szepfalusy and T. Vicsek, Multifractal spectra of multi-affine functions, Physica A 178 (1991 ) 17-28.         [ Links ]

[23] J.C. Echeverria, M.S. Woolfson, J.A. Crowe, B.R. Hayes-Hill, G.D.H. Croaker and H. Vyas, Interpretaion of heart rate variability via detrended fluctuation analysis and αβ filter, Chaos, 13 (2003) 467-475.         [ Links ]

[24] L.A. Amaral, A.L. Goldberger, P.Ch. Ivanov and H. Eugene Stanley, Modeling heart rate variability by stochastic feedback, Comp. Phys. Comm., (1999) 126-128.         [ Links ]

[25] R.M. Berne and M.N. Levy, Cardiovascular Physiology, 6th ed., C.V. Mosby, St. Louis, 1996.         [ Links ]

[26] A. Malliani, M. Pagani, F. Lombardi and S. Cerutti, Cardiovascular neural regulation explored in the frequency domain, Circulation, 84 (1991) 1482-1492.         [ Links ]

[27] N. Montano, T.G. Ruscone, A. Porta, F. Lombardi, M. Pagani, A. Malliani, Power spectrum analysis of heart rate variability to stress the changes in sympathovagal balance during graded arthostatic tilt, Circulation, 90 (1994) 1826-1831.         [ Links ]

[28] J.P. Saul, R.F. Rea, D.L. Eckberg, R.D. Berger and R.J. Cohen, Hear rate and muscle sympathetic nerve variability during reflex changes of automic activity, Am. J. Physiol. 258 (1990) H713-H721.         [ Links ]

[29] M. Malik A.J. Camm, Heart rate variability and clinical cardiology, Br. Heart J. 90 (1994) 1826-1831.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons